
Complexity Classes

Simon Meyers

1. Introduction

In computational complexity theory, complexity classes are group problems

based on their resource demands, like how much time or memory is needed to solve

them. They are defined by the difficulty of solving problems with specific computational

resources. Typically, these classes include decision problems solvable by Turing

machines, and they're categorized by their time or space requirements. Decision

problems are the kinds of problems that can be posed as yes–no questions, like whether

or not a given number is prime. Complexity classes also consist of other problems such

as function problems, counting problems, and optimization problems.

There are established hierarchies among complexity classes. For example, we

know that fundamental time and space complexity classes relate to each other in this

way:

L⊆ NL⊆ P⊆ NP⊆ PSPACE⊆ EXPTIME⊆ NEXPTIME⊆ EXPSPACE.

These classes also exhibit various closure properties. For instance, some are

closed under operations like negation, disjunction, and conjunction. The class P is



notable for being closed under all Boolean operations and for quantification over

polynomially sized domains.

Complexity classes are so useful because they help computer scientists group

problems based on how much time and space they require to be solved and for the

solution to be verified. They are also the basis of problems in theoretical computer

science such as the famous P = NP problem, which asks whether every problem whose

solution can be quickly verified can also be quickly solved.

2. Types of Complexity Classes

● P complexity/Polynomial time complexity: P complexity is the set of all

decision problems that can be solved by a deterministic Turing machine using

polynomial time, meaning a polynomial amount of computation time. In other

words, P is the class of computational problems that are efficiently solvable. P

complexity consists of problems such as calculating the greatest common divisor,

merge sort, and finding a maximummatching.

● NP complexity/Nondeterministic polynomial time complexity: NP

complexity is the set of all decision problems for which the problem has a proof

verifiable in polynomial time by a deterministic Turing machine. It is

alternatively defined as the set of problems that can be solved in polynomial time

by a nondeterministic Turing machine. In other words, NP complexity is the class

of computational problems that are efficiently verifiable. NP complexity consists



of problems such as the Boolean Satisfiability Problem, graph coloring, and the

Hamiltonian Path Problem.

● BPP complexity/Bounded-error probabilistic polynomial time

complexity: BPP complexity is the set of all decision problems that are solvable

by a probabilistic Turing machine in polynomial time with an error probability

bounded by 1/3 for all instances. BPP complexity is the class of computational

problems that have an algorithm which is allowed to flip coins and make random

decisions, is guaranteed to run in polynomial time, and has a probability, on any

given run of the algorithm, of at most 1/3 of giving the wrong answer, whether

the answer is YES or NO. BPP complexity consists of problems such as

polynomial identity testing.

● PSPACE complexity/Polynomial space complexity: PSPACE complexity is

the set of all decision problems that can be solved by a Turing machine using a

polynomial amount of space. PSPACE complexity consists of problems such as

the quantified Boolean formula problem, and finding optimal play styles in

games like solitaire and mahjong.

● NP hard complexity: NP hard complexity is the set of all decision problems A,

such that for every problem L in NP, there exists a polynomial-time reduction

from L to A. NP hard complexity consists of problems such as the halting

problem.



3. The P versus NP problem

The P versus NP problem is one of the seven Millennium Prize Problems selected

by the Clay Mathematics Institute, each of which carries a 1,000,000 dollar prize for the

first correct solution. It is a major unsolved problem in theoretical computer science

that asks whether every problem whose solution can be quickly verified can also be

quickly solved. In other words, P versus NP is asking if every problem in complexity

class P is also in complexity class NP, and vice versa.

An answer to the P versus NP question would determine whether problems that

can be verified in polynomial time can also be solved in polynomial time, since we

already know that P is contained in NP. So, if P ≠ NP, it would mean that there are

problems in NP that are harder to compute than to verify. On the other hand, if we

found that P = NP, then we would know that all the hard problems in complexity class

NP, which are easily verifiable, are also in complexity class P, meaning that they are

easily solvable. These problems, similar to the ones I stated earlier when discussing the

complexity class NP, consist of problems such as the subset sum problem, the vertex

cover problem, and the traveling salesman problem.

In conclusion, aside from being an important problem in computational theory, a

proof of the P versus NP problem either way would have profound implications for

mathematics, cryptography, algorithm research, artificial intelligence, game theory,

multimedia processing, philosophy, economics and many other fields.



References

[1] Rubinstein-Salzedo, Simon, Cryptography, Springer, 2018.

[2] Fortnow, Lance, The Status of the P versus NP Problem, 2009,

https://wayback.archive-it.org/all/20110224135337/http://people.cs.uchicago.edu/~fo

rtnow/papers/pnp-cacm.pdf

[3] Dawar, Anuj, Complexity Theory, 2013,

https://www.cl.cam.ac.uk/teaching//1213/Complexity/lecture12.pdf

[4] Complexity Theory

https://web.stanford.edu/class/archive/cs/cs103/cs103.1208/lectures/20-Complexity/

Complexity%20Theory.pdf

[5] Art of Problem Solving, P versus NP

https://artofproblemsolving.com/wiki/index.php/P_versus_NP


