
INDISTINGUISHABILITY OBFUSCATION

SAMARTH DAS

Abstract. This paper discusses various applications of indistinguishability obfuscation to
cryptographic problems and their constructions.

1. What is Program Obfuscation?

You may be familiar with a password, which is a secret key that only you know that can
give you access to various different things such as your email account. When you enter the
wrong password, the system informs you of this because it is aware of the correct one and
prevents an attacker from accessing your account. But what if we were able to keep a secret
information that the software and the person who runs the software also does not know?
This is called program obfuscation.

2. Indistinguishability Obfuscation

The simplest way to do so is called indistinguishability obfuscation. This system says
that if we have two equivalent programs P1 and P2 where (P1(x) = P2(x)∀x, and one of these
is obfuscated, then it is impossible to tell which one is obfuscated. To make this definition
rigorous, we have the following:

Definition 2.1 (Indistinguishability Security for Obfuscation). An obfuscator Obf is indis-
tinguishability secure if the following holds. For any two programs P0, P1 that are equivalent
(P1(x) = P2(x)∀x and have the same size, for any PPT adversary A, there exists a negligible
function negl such that

Pr[A(Obf(P0)) = 1]− Pr[A(Obf(P1)) = 1] < negl(λ)

It turns out with this definition we can apply iO (the short form for indistinguishability
obfuscation) to a wide variety of cryptographic tasks as we will see.

3. Digital Signatures

Consider the two people Alice and Bob. They want to communicate in such a manner
that any adversary trying to intercept and modify the message can be detected.

We can do this with the use of a digital signature scheme where Alice generates a public
verification key vk and gives it to Bob, and generates for herself a private signing key sk.
When Alice sends a message m, she uses her signing key sk to generate a signature, and
forwards this along with m. If Bob receives m′ = m, we want him to reject the message.

The signature method is as follows:

• Gen(λ) takes the security parameter λ as input and outputs (sk,vk).
• Sign(sk,m) takes the secret key sk and the message m as input and outputs σ.

Date: August 19, 2024.
1

2 SAMARTH DAS

• Ver(vk,m, σ) takes the verification key vk, the message m, and and outputs accept
or reject.

The obvious correctness requirement is that if we start with a message m and generate
Sign(sk,m) → σ, then Ver(vk,m) accepts. The natural way to attack this is a chosen
message attack, where the adversary commits to a message m′ and sends it to the chal-
lenger. The challenger generates the secret key/verification key pair (sk,vk)← Gen(λ) and
sends vk back to the adversary. At this point, the adversary may make polynomially many
queries message queries to the challenger, where he sends a message m′ ̸= m and receives
Sign(sk,m). The adversary generates a new signature σ′ and wins if Ver(vk,m′, σ′) = accept.
The adversaries advantage is his probability of winning.

To make this secure, we introduce a variant of the pseudorandom function PRF, a punc-
tured PRF:

Definition 3.1 (Puncturable PRF). A puncturable PRF is a function PRF (k, x)← y which
has an algorithm k{x′} ← Puncture(k, x′) that outputs a punctured key.

Then we require that (k{x′}, PRF (k, x′)) ≈c (k{x′}, R) where R is a random value. This
means that the value at x′ of the PRF is indistinguishable from a random value R.

Construction 3.2. We can make the following working construction:

• Gen(λ) samples sk = k ← {0, 1}λ . Define Ck(m,σ) = F (PRFk(m)) = F (σ) where

F is a one way function. Then we set vk = O(Ck) = Ĉ.
• Sign(k,m) = PRF (k,m)

• Ver(Ĉ,m, σ) = Ĉ(m,σ)

4. Public Key Encryption

A public key encryption (PKE) scheme consists of three algorithms:

• Gen(λ) takes security parameter as input and outputs a pair of keys (ekdk), where
ek is the public encryption key and dk is the corresponding private decryption key.
• Enc(ek,m) is a randomized algorithm that takes the encryption key ek and a message
m and outputs a ciphertext C.
• Dec(dk, C) takes the decryption key dk and a ciphertext C and outputs a message
m.

For correctness, we require that: Dec(dk,Enc(ek,m)) = m and (ek,dk)← Gen(λ).
The security of a PKE scheme is defined as a game between an adversary and a challenger:

(1) The challenger generates (ek,dk)← Gen(λ).
(2) The challenger sends ek to the adversary.
(3) The adversary sends two messages m0 and m1 to the challenger.
(4) The challenger chooses a random bit b and send Encrypt(ek,mb) to the adversary.
(5) The adversary outputs guess b′.

Let Wb be the event that the adversary outputs 1 when the challenger has the bit b.

Definition 4.1 (PKE security). A PKE scheme is secured if for all PPT adversaries, there
exists a negligible function negl such that: |Pr[W0]− Pr[W1]| ≤ negl(λ)

Construction 4.2. We can construct a PKE scheme with OWF and iO as follows:

INDISTINGUISHABILITY OBFUSCATION 3

• Gen(λ) : Generate a random key K ← {0, 1}λ . Set K as the puncturable PRF key.
Construct program PK(s) which has the PRF key K hardcoded. PK(s): r ← PRG(s)
r ← PRF(K, r) Outputs (r, y) Set dk = K and ek = Obf(P −K) where Obf(P −K) is
an obfuscation of PK. Output (ekdk)
• Enc(Obf(PK),m) : Generate a random s ← {0, 1}λ (r, y) ← Obf(PK)(s) Output
(r, y

⊕
m)

• Dec(K(r, c)): Output m = x
⊕

PRF(K, r)
.

5. Multiparty Key Exchange

Non-interactive key exchange (NIKE) is a method for multiple parties to, through the
minimum amount of interaction, establish a shared secret key, even with the presence of an
adversary in the communication channel.

Suppose we have a public bulletin board and parties and parties A,B, C,D. Each party
is going to compute a secret value sv and a public value pv. All parties then publish their
public values pkA, pkB, pkC , pkD to the board. A can now compute shared key K using
pkB, pkC , pkD, skA. B and other parties should also be able to compute the same key K from
pkA, pkC , pkD, skB or the equivalent tuples for C and D. Meanwhile, an adversary who see
only pkA, pkB, pkC , pkD should not be able to find K. The problem is difficult in that all
parties compute their values independently, yet they are still able to establish a common
key K. In a weaker variant of the scheme with trusted setup, we have a trusted third party
who, prior to everything else, publish the public parameter params. All parties can then
independently compute their values using params. For two parties, we can use the Diffie-
Hellman key exchange scheme. Using bilinear maps, we can expand the key exchange to
three parties.

Now we look at how we can have a shared key. Alice and Bob have a channel through
which they can communicate over many rounds. The goal is for Alice and Bob to agree on a
shared key k that an eavesdropper (who can see every round of communication) is unable to
deduce anything about. This two party system is easily solved by the public key encryption
we described earlier.

Why is non-interactive key exchange particularly interesting? It is interesting to see if we
can compress communication to just a single, non interactive round. The messages/public
values can be reused. The fact that this procedure is non interactive means that Alice and
Bob can post their public values to establish a shared key, and later, if Charlie wants to
establish a shared key with just Bob, Bob doesnt have to post any new messages. Charlie
just runs his half of the protocol, and posts his public value. Then Bob can compute the
shared key kBC right away

Definition 5.1 (Multiparty NIKE). We define a multiparty NIKE scheme to consist of the
following PPT algorithms:

• Setup(λ,N)→ params

• Publish, (params, i)→ (svi, pvi)
• KeyGen(params, {pvi}n=1,...,N , svj)→ k

To make a proof of security work with just iO, we need to make a few changes. We turn
the one way function into a PRG, and the PRF into a puncturable PRF. The PRG will be
length doubling: {0, 1}λ → {0, 1}2λ.

4 SAMARTH DAS

Construction 5.2. Then we make the following construction:
• Setup(λ,N) samples a totally random kPRF ← {0, 1}λ,and outputs iO(PkPRF , λ,N),
where PkPRF , λ,N is as defined above (with the given modifications).

• Publish(P̂), sets sv ← {0, 1}λ, pv ← PRG(sv), and then outputs pv, sv.

• KeyGen(P̂ , {pvi}n=1,...,N , i, svi)→ k outputs P̂ ({pvi}, i, svi).

6. Conclusion

Obfuscation is a very challenging task. Indeed, someone who posses the program has many
ways to try to extract information. They can run the program on inputs of their choice, and
get to see all intermediate states of the program in addition to the program output. They
can even inject faults changing the internal state and observing how that affects program
behavior. They can do all of this, and yet still should not be able to learn anything about
the implementation details of the program.

References

[1] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
Journal of the ACM (JACM), 65(6):1–37, 2018.

[2] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016.

[3] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749, 2021.

[4] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 60–73, 2021.

[5] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 475–484,
2014.

[1] [2] [3] [4] [5]

	1. What is Program Obfuscation?
	2. Indistinguishability Obfuscation
	3. Digital Signatures
	4. Public Key Encryption
	5. Multiparty Key Exchange
	6. Conclusion
	References

