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Shor’s algorithm works by converting factoringN = pq into a problem about finding
the order, r of g (mod N), and then solving this problem using the quantum Fourier
transform.

Given the r and some random guess at one of the factors of N , g, we have that
gr − 1 ≡ 0 (mod N), and if r is even, this can be factored to (g

r
2 + 1)(g

r
2 − 1) ≡ 0

(mod N). Now, we can take f = gcd(N, g
r
2 ± 1), and if f ̸= 1 and f ̸= N , we will

have factored N . Writing this as an algorithm, we have that

Definition 1. Shor’s algorithm is defined as follows: Let N = pq be an integer, where
p and q are distinct primes, and N is odd.

(1) Choose a random number 1 < g < N
(2) Compute gcd(g,N)
(3) If gcd(g,N) ̸= 1, then gcd(g,N) is a factor of N , so we would have factored

N .
(4) Find the order, r of g
(5) If r is odd, return to step 1.
(6) Otherwise, compute f = gcd(N, x

r
2 + 1), and if f ̸= 1 and f ̸= N , then we

have factored N , otherwise, go back to step 1.

Most of these steps can be preformed efficiently with standard computers, however,
step 4, finding the order, r of g, is slow with classical computers, but can be vastly
sped up using a quantum computer.

Now, we will take a look more closely at step 4 in the algorithm; computing the
order, r of g.

Notice that gr+i ≡ grgi ≡ gi (mod N), which means that we can create a list of
values of gi (mod N), and we look for how long it takes gi (mod N) to repeat, and
this will be r. However, this is extremely inefficient using classical computers, as
this would involve O(en) computations on average; we would have to exponential gi

r times (where n is the length of N).
However, quantum computers give us a much faster way to do this computation

using the Quantum Fourier Transform, which takes advantage of the unique properties
of qubits (the quantum computing analog of bits) to compute r quickly.
First, we will introduce some notation used in quantum mechanics. Vectors are

denoted by |x⟩, which is called a “ket.”
Given a Hilbert, H space with n dimensions, then we denote the elements of its

orthonormal basis

|0⟩ , |1⟩ , . . . , |n− 1⟩
and we write

|ψ⟩ , |ϕ⟩ . . .
and various other greek letters for generic elements of H. For any |ψ⟩ ∈ H, we write
⟨ψ| for the dual element in H∨ (a generalized transpose that also works for vector
spaces over C |ψ⟩.
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Example 1. If dimH = 2, and

|ψ⟩ =
[
x
y

]
, then

⟨ψ| =
[
x y

]
,

where x is the complex conjugate of x. If x, y ∈ R, then ⟨ψ| would be the transpose
of |ψ⟩.

This gives us a convenient way to write dot products; if |ϕ⟩ =
[
z
w

]
, then the dot

product of ⟨ψ| and |ϕ⟩ is ⟨ψ⟩ϕ =
[
x y

] [z
w

]
= xz + yw.

With classical computers, bits can be either 0’s or 1’s, so the space of possible states
of the bit is a discrete set. However, in quantum computation, qubits (or quantum
bits) are complex linear combinations of 0’s and 1’s.

Definition 2. Consider the normed complex vector space

H = C⊕2

(which is a vector space containing vectors with two complex coordinates, that has a
way to measure size, akin to absolute value)

and let the orthonormal basis elements be |0⟩, |1⟩. A qubit is a nonzero element
|ψ⟩ ∈ H that can be written in the form

|ψ⟩ = a |0⟩+ b |1⟩

such that at least one of a and b are nonzero (and a, b ∈ C).

We also have that |0⟩ =

[
1
0

]
, |1⟩ =

[
0
1

]
, for when we need to use vector-matrix

multiplication. This allows us to have any complex linear combination of states, which
are called superpositions of the states |0⟩ , |1⟩, so instead of just having |0⟩ and |1⟩ as
possible states, we can have states like

√
3
2
|0⟩+ 1

2
|1⟩, and i |0⟩+

√
2 |1⟩. Typically, we

normalize these states, so that for any vector, a |0⟩+ b |1⟩, |a|2 + |b|2 = 1
When we choose to measure these qubits with respect to |0⟩ , |1⟩ (this is how measur-

ing qubits is typically done) something strange happens; we get |0⟩ with a probability
of |a|2, and we get |1⟩ with a probability of |b|2.
This observation ”collapses” the superposition, so if we measure the qubit to be

|1⟩, then its state is now |ψ⟩ = |1⟩, not |ψ⟩ = a |0⟩+ b |1⟩.
If we try to measure |ψ⟩ again, we will still get |1⟩, since b = 1 and a = 0, now that

the qubit’s superposition collapsed.

We can measure qubits with respect to other orthonormal bases, |x⟩ , |y⟩. To do
this, we rewrite |ψ⟩ in the form α |x⟩+β |y⟩, and then we have a |α|2 chance of getting
|x⟩ and a |β|2 chance of getting |y⟩.
The basis |+⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ , |−⟩ = 1√

2
|0⟩− 1√

2
|1⟩ is a particularly notable basis.
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We can also observe a qubit with respect to |−⟩ , |+⟩, and still have a superposition
with respect to |0⟩ , |1⟩, since the qubit will collapse to either 1√

2
|0⟩ + 1√

2
|1⟩, or

1√
2
|0⟩ − 1√

2
|1⟩.

In order to preform computations with qubits, we need to use quantum logic gates
to modify the bits. Since qubits are linear combinations of |0⟩ , |1⟩, logic gates consist
of linear maps.

Definition 3. For a map U : H → H, we call U unitary if U † is the inverse of U .
Quantum gates consist of unitary matrices, and because of their defining property,

they are invertible.

Example 2. The Hadmard transformation is a unitary transformation that sends |0⟩
to |+⟩, and |1⟩ to |−⟩. If we set , then the Hadmard transformation can be written

as

[ 1√
2

1√
2

1√
2

− 1√
2

]
This is unitary; the Hadmard transformation’s transpose is

[ 1√
2

1√
2

1√
2

− 1√
2

]
, and all of

the arguments of the matrix are real, so they are their own complex conjugate, so

U † = U , but we need U † = U−1. To show this, we take U2 =

[
1 0
0 1

]
, which is the

identity, as desired.
Now, we will look at tensor products, which can describe the states of multiple

qubits at once. Given two vector spaces V,W , over the field k, we can combine these
using a tensor product, resulting in V ×W being the new space. The tensor product
acts as a “wall” seperating the elements of V and W , but allowing us to consider
combinations of them in a single state, which is extremely useful for when we need
to consider multiple qubits, which are each in superpositions.

Definition 4. More formally, let V and W be vector spaces over the same field k.
The tensor product V ×W is the abelian group generated by elements of the form
v × w, with the relations

(v1 + v2)× w = v1 × w + v2 × w

v × (w1 + w2) = v × w1 + v × w2

(c · v)× w = v × (c · w),
where c ∈ k is a scalar, and v ∈ V,w ∈ W .
Remember that elements of the form v × w generate V ×W ; sums of vectors of

the form v × w may not be expressable as a direct tensor product, but can still be
elements of the space.

Now, to express the state of multiple qubits at once, say the qubits |0⟩ , |1⟩ , |0⟩ , |0⟩ , |1⟩,
we take |0⟩ × |1⟩ × |0⟩ × |0⟩ × |1⟩, which represents the state of all qubits at once.
We will let |x⟩ refer to |xn⟩× |xn−1⟩× · · ·× |x1⟩, where x = xnxn−1 . . . x1 in binary.
For example, if j = 5, then |j⟩ = |1⟩ × |0⟩ × |1⟩.
To set up the Fourier Transform, we let Q be a number, typically a power of 2. We

will use Q = 2e > n, where Q is the smallest power of 2 greater than n, since powers
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of two work nicely with qubits in the same way that they work well with normal bits.
Let f : Z → Z/QZ be a periodic function with periodicity k, so that f(x) = f(x+ k)
for all x, and k is the smallest value with this property. We must also assume that
f(i) ̸= f(j), where i, j < k, i ̸= j. For our case, f(x) = gx (mod n), and since Q > n,
we can still expresss all of the values of gx (mod n) in Z/QZ. We do not have to
worry about f(i) = f(j), where i, j < k, i ̸= j, because then gi = gj (mod n), so
gi−j ≡ 1 (mod n), which is a contradiction, since i− j < k.

Let us take some integer j where 0 ≤ i < Q, and take the binary representation of
j, using e digits. Then we create a quantum state out of j, using e qubits.

Example 3. If Q = 32 and j = 5, then j in binary is 00101, so we create a quantum
state using the five qubits starting in |0⟩× |0⟩× |1⟩× |0⟩× |1⟩, which we write as |j⟩.
Let ωN = e

2πi
N

The Quantum Fourier transform is defined by

F |j⟩ = 1√
Q

Q−1∑
k=0

ωjk
N |k⟩ .

If we start with a collection of qubits in a superposition,

|ψ⟩ =
Q−1∑
ℓ=0

aℓ |ℓ⟩ ,

then

F |x⟩ =
Q−1∑
ℓ=0

aℓ√
Q

(
Q−1∑
k=0

ωjk
Q |k⟩

)
Now, we can complete Shor’s algorithm. We start by initializing the qubit

|ψ⟩ = 1√
Q

Q−1∑
k=0

|k⟩ ,

which takes up e qubits, and we use e more qubits to represent f(k), giving us 2e
qubits. Since we have the first e qubits in a superposition of |k⟩ and the last e in a
superposition of |f(k)⟩ We write this as

|ψ, f(ψ)⟩ = 1√
Q

Q−1∑
k=0

|k, f(k)⟩ .

Now we take the quantum Fourier transform of the first e qubits, giving us

|Fψ, f(ψ)⟩ = 1√
Q

Q−1∑
k=0

1√
Q

Q−1∑
ℓ=0

ωkℓ
Q |ℓ, f(k)⟩

=
1

Q

Q−1∑
m=0

Q−1∑
ℓ=0

|ℓ,m⟩
∑

k:f(k)=m

ωkℓ
Q

Now we measure all 2e qubits, giving us 2e qubits of the form |ℓ,m⟩.
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The probability of getting any given pair is∣∣∣∣∣∣ 1Q
∑

k:f(k)=m

ωkℓ
Q

∣∣∣∣∣∣
2

=
1

Q2

∣∣∣∣∣∣
(Q−k0−1)/r∑

b=0

ωℓrb
Q

∣∣∣∣∣∣
2

where k0 is the smallest value such that f(k0) = m, and r is the period, which is what
we want.

Since for any integer, T , we have that
N−1∑
k=0

e2πi
k
N = 0,

since this gives us a bunch of roots of unity, which cancel out (for any given nth

root of unity, α, −α is also an nth root of unity, so e2πi
k
N will eventually reach both

points, making them cancel). The only way we can prevent terms from canceling is
by making sure ωℓrb

Q is close to 1, or that ℓr
Q

is close to an integer, c.

So, after preforming a measurenment, ℓr
Q

is most likely close to an integer, and we

know ℓ and Q, so we can rearrange this to get that ℓ
Q
is close to c

r
. We can then look

at the continued fraction expansion of ℓ
Q
, and create a list of approximations of c

r
,

and check if the denominators of any of these fractions are r, by taking gr (mod n).
If this does not work for all of the denominators, d < (mod n), then we can try
another g, and start the algorithm again, but this happens rarely.
For quantum computers, it is easy to compute the fourier transform of the superpo-

sition, as shown in [Sho99], and since the rest of the algorithm is not computationally
difficult, Shor’s algorithm can factor in polynomial time. Thus, quantum computers
give us an efficient way to factor N = pq, and crack RSA encryption.
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