
SHA-256 STEP REDUCTION AND COLLISION ANALYSIS

MIHIR GUPTA
mihirgupta292@gmail.com

1. Introduction

A hash function is a mathematical algorithm that transforms an arbitrary input into a fixed-
size string of bytes, known as the hash value or digest. Hash functions are designed to be
fast and produce unique outputs for unique inputs, ensuring data integrity. However, when
two different inputs produce the same hash value, it is known as a hash collision, which can
compromise the security of the hash function. For instance, in cryptographic hash functions
used for storing passwords, a hash collision could allow an attacker to gain access using a
different password that produces the same hash as the original, compromising the security
of the system.

Given the critical role of hash functions in securing data, the robustness of these func-
tions—particularly their resistance to collisions—has been a focal point in cryptography.
SHA-256, a member of the SHA-2 family, is one such function widely used in securing data
across various applications. However, the resilience of hash functions like SHA-256 is criti-
cally dependent on their resistance to collision attacks. This paper explores collision attacks
on step-reduced versions of SHA-256, focusing on 20-, 21-, 23-, and 47-step reductions. We
describe the methodology for finding collisions in these reduced versions, emphasizing the
mathematical structures that facilitate such attacks.

2. Mathematical Description of SHA-256

SHA-256 is a cryptographic hash function that processes an input message by dividing
it into 512-bit blocks. Each block undergoes 64 steps of processing within a compres-
sion function. The function maintains an internal state consisting of eight 32-bit variables
A,B,C,D,E, F,G, and H, which are updated at each step according to the following equa-
tions:

Ai+1 = Σ0(Ai) + Maj(Ai, Bi, Ci) + Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Ki +Wi,

Bi+1 = Ai,

Ci+1 = Bi,

Di+1 = Ci,

Ei+1 = Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Ki +Wi +Di,

Fi+1 = Ei,

Gi+1 = Fi,

Hi+1 = Gi.

Date: July 2024.
1

2 MIHIR GUPTA mihirgupta292@gmail.com

Here, Σ0 and Σ1 are non-linear functions defined as:

Σ0(X) = ROTR2(X)⊕ ROTR13(X)⊕ ROTR22(X),

Σ1(X) = ROTR6(X)⊕ ROTR11(X)⊕ ROTR25(X),

where ROTRn(X) represents the right rotation of the 32-bit word X by n bits.

The rotation and shift operations are used to mix the bits in the words, adding complexity
and diffusion to the hash function.

Right Rotation (ROTR): The operation ROTRn(X) rotates the 32-bit word X to the
right by n bits. For example, if X is ‘10011010‘ and n = 3, then ROTR3(X) would result in
‘01010011‘.

Right Shift (SHR): The operation SHRn(X) shifts the 32-bit word X to the right by n
bits, filling the leftmost n bits with zeros. For example, if X is ‘10011010‘ and n = 3, then
SHR3(X) would result in ‘00010011‘.

The functions Maj and Ch are defined as:

Maj(X, Y, Z) = (X ∧ Y)⊕ (X ∧ Z)⊕ (Y ∧ Z),

Ch(X, Y, Z) = (X ∧ Y)⊕ (¬X ∧ Z).

Majority (Maj): This function returns the majority bit of its three inputs:

Maj(X, Y, Z) = (X ∧ Y)⊕ (X ∧ Z)⊕ (Y ∧ Z)

This means that each bit of the output is ‘1‘ if at least two of the corresponding bits in X, Y,
and Z are ‘1‘.

Choice (Ch): This function selects bits from Y or Z, based on the value of X:

Ch(X, Y, Z) = (X ∧ Y)⊕ (¬X ∧ Z)

If a bit in X is ‘1‘, the corresponding bit from Y is chosen; otherwise, the bit from Z is
chosen.

The message block M is expanded into 64 words W0,W1, . . . ,W63, where the first 16 words
are directly taken from the message, and the remaining words are computed as:

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16,

with the functions σ0 and σ1 defined as:

σ0(X) = ROTR7(X)⊕ ROTR18(X)⊕ SHR3(X),

σ1(X) = ROTR17(X)⊕ ROTR19(X)⊕ SHR10(X),

where SHRn(X) denotes the right shift of X by n bits.

The message block is divided into 16 words initially, but the schedule W extends this to 64
words using a combination of the original message words and the σ0 and σ1 functions. This
ensures that the data from the original message is mixed and diffused throughout the hash
computation.

The constants Ki are 64 unique, predetermined values derived from the cube roots of the first
64 prime numbers, used to provide additional entropy in each iteration step of the SHA-256
compression function. These constants are essential to the security of SHA-256, introducing

SHA-256 STEP REDUCTION AND COLLISION ANALYSIS 3

fixed, but complex, numbers into the hash computation, which helps in preventing attacks
like preimage and collision attacks.

We have attached Python implementation of SHA-256 in Listing 1, and a few example
executions in Listing 2.

3. Types of Collision Attacks

Different types of collision attacks are used to exploit weaknesses in the hash function’s
ability to produce unique outputs for different inputs. The three primary types of collision
attacks discussed in this paper are:

3.1. Collision Attack. This is the most basic type of attack where the goal is to find two
different messages, M1 and M2, such that they produce the same hash value with the same
initial value:

H(M1, h0) = H(M2, h0)

Here, h0 is the initial chaining value.

3.2. Semi-Free Start Collision Attack. In this type of attack, the goal is to find two
different messages, M1 and M2, and a specific initial hash value h∗

0, such that:

H(M1, h
∗
0) = H(M2, h

∗
0)

Unlike a full collision attack, we can choose a different initial value h∗
0 for the hash function.

3.3. Near Collision Attack. This type of attack is focused on finding two different mes-
sages such that their hash values are close but not exactly the same. The difference between
the hash values is small, typically measured in the number of differing bits (Hamming dis-
tance). For example, in a near collision with a Hamming distance of 15 bits:

Hamming distance(H(M1, h0), H(M2, h0)) = 15

Near collisions are often used to demonstrate partial weaknesses in the hash function.

4. Technique for Collision Creation

In this section we present steps from [1] to find collisions in 20 step-reduced SHA-256.

Differences mentioned below are subtractions mod 232 differences. We use the following
notations:

∆X = X ′ −X, X ∈ {A,B,C,D,E, F,G,H,W,m}
∆Maji(∆a,∆b,∆c) = Maj(Ai +∆a,Bi +∆b, Ci +∆c)−Maj(Ai, Bi, Ci)

∆Chi(∆e,∆f,∆g) = Ch(Ei +∆e, Fi +∆f,Gi +∆g)− Ch(Ei, Fi, Gi)

∆Σ0(Ai) = Σ0(A
′
i)− Σ0(Ai)

∆Σ1(Ei) = Σ1(E
′
i)− Σ1(Ei)

∆σ0(mi) = σ0(m
′
i)− σ0(mi)

∆σ1(mi) = σ1(m
′
i)− σ1(mi)

4 MIHIR GUPTA mihirgupta292@gmail.com

We introduce a disturbance at step i and aim to correct the differences in the subsequent 8
steps. The following differential pattern is utilized:

Table 1. A 9-step differential for SHA-256.

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆W
i 0 0 0 0 0 0 0 0 1

i+ 1 1 0 0 0 1 0 0 0 δ1
i+ 2 0 1 0 0 −1 1 0 0 δ2
i+ 3 0 0 1 0 0 −1 1 0 δ3
i+ 4 0 0 0 1 0 0 −1 1 0
i+ 5 0 0 0 0 1 0 0 −1 0
i+ 6 0 0 0 0 0 1 0 0 0
i+ 7 0 0 0 0 0 0 1 0 0
i+ 8 0 0 0 0 0 0 0 1 δ4
i+ 9 0 0 0 0 0 0 0 0 0

As shown in the above table (column ∆W), the perturbations from ∆A through ∆H and
the initial ∆W are fixed. The other perturbations remain to be solved for.

4.1. Conditions for Local Collisions. Focusing on Ai+1 and Ei+1:

(4.1) ∆Ai+1 −∆Ei+1 = ∆Σ0(Ai) + ∆Maji(∆Ai,∆Bi,∆Ci)−∆Di,

(4.2) ∆Ei+1 = ∆Σ1(Ei) + ∆Chi(∆Ei,∆Fi,∆Gi) + ∆Hi +∆Di +∆Wi.

When ∆Ai = ∆Bi = ∆Ci = 0, ∆Maji(0, 0, 0) = 0. Similarly, when ∆Ei = ∆Fi = ∆Gi = 0,
∆Chi(0, 0, 0) = 0.

Fixing the differences in A and E (as shown in the table) means that B, C, D, F , G, and H
can only inherit values from A and E. This results in equations involving δi and the values
of Ai or Ei at each step.

Step i+1. With ∆Di = 0, ∆Hi = 0, ∆Σ0(Ai) = 0, and ∆Σ1(Ei) = 0, we require ∆Ai+1 = 1
and ∆Ei+1 = 1, leading to:

(4.3) ∆Wi = 1

Step i+ 2. Given ∆Di+1 = 0 and ∆Hi+1 = 0, we need ∆Ai+2 = 0 and ∆Ei+2 = −1, while
ensuring ∆Σ0(Ai+1) = 1. Thus:

(4.4) ∆Maji+1(1, 0, 0) = 0

(4.5) ∆Wi+1 = −1−∆Chi+1(1, 0, 0)−∆Σ1(Ei+1)

(4.6) ∆Σ0(Ai+1) = 1

SHA-256 STEP REDUCTION AND COLLISION ANALYSIS 5

Step i + 3. With ∆Di+2 = 0, ∆Hi+2 = 0, and ∆Σ0(Ai+2) = 0, we require ∆Ai+3 = 0 and
∆Ei+3 = 0, leading to:

(4.7) ∆Maji+2(0, 1, 0) = 0

(4.8) ∆Wi+2 = −∆Σ1(Ei+2)−∆Chi+2(−1, 1, 0)

Step i + 4. With ∆Di+3 = 0, ∆Hi+3 = 0, ∆Σ0(Ai+3) = 0, and ∆Σ1(Ei+3) = 0, we require
∆Ai+4 = 0 and ∆Ei+4 = 0, resulting in:

(4.9) ∆Maji+3(0, 0, 1) = 0

(4.10) ∆Wi+3 = −∆Chi+3(0,−1, 1)

Step i + 5. With ∆Di+4 = 1, ∆Hi+4 = 1, ∆Σ0(Ai+4) = 0, and ∆Σ1(Ei+4) = 0, we require
∆Ai+5 = 0 and ∆Ei+5 = 1, leading to:

(4.11) ∆Chi+4(0, 0,−1) = −1

Step i+ 6. With ∆Di+5 = 0, ∆Hi+5 = −1, and ∆Σ0(Ai+5) = 0, we require ∆Ai+6 = 0 and
∆Ei+6 = 0, while ensuring ∆Σ0(Ei+5) = 1. This leads to:

(4.12) ∆Chi+5(1, 0, 0) = 0

(4.13) ∆Σ1(Ei+5) = 1

Step i + 7. With ∆Di+6 = 0, ∆Hi+6 = 0, ∆Σ0(Ai+6) = 0, and ∆Σ1(Ei+6) = 0, we require
∆Ai+7 = 0 and ∆Ei+7 = 0, leading to:

(4.14) ∆Chi+6(0, 1, 0) = 0

Step i + 8. With ∆Di+7 = 0, ∆Hi+7 = 0, ∆Σ0(Ai+7) = 0, and ∆Σ1(Ei+7) = 0, we require
∆Ai+8 = 0 and ∆Ei+8 = 0, leading to:

(4.15) ∆Chi+7(0, 0, 1) = 0

Step i + 9. With ∆Di+8 = 0, ∆Hi+8 = 1, ∆Σ0(Ai+8) = 0, and ∆Σ1(Ei+8) = 0, we require
∆Ai+9 = 0 and ∆Ei+9 = 0, leading to:

(4.16) ∆Wi+8 = −1

6 MIHIR GUPTA mihirgupta292@gmail.com

4.2. Solving the Equations. First, consider equations (4.6) and (4.13). Given that ∆Ai+1 =
∆Ei+5 = 1, we require the functions ∆Σ0(Ai+1) and ∆Σ1(Ei+5) to preserve this difference
of 1:

(4.17) Σ0(Ai+1 + 1)− Σ0(Ai+1) = 1,

(4.18) Σ1(Ei+5 + 1)− Σ1(Ei+5) = 1.

The only solution to these equations is Ai+1 = Ei+5 = −1, hence:

(4.19) Ai+1 = −1, A′
i+1 = 0,

(4.20) Ei+5 = −1, E ′
i+5 = 0.

Next, consider the function ∆Maji = Maj(A′
i, B

′
i, C

′
i) −Maj(Ai, Bi, Ci). Assume that B′

i =
Bi, C

′
i = Ci, and Ai and A′

i differ in all bits, i.e., Ai ⊕ A′
i = 0xffffffff . Then:

(4.21) ∆Maji = 0 if and only if Bi = Ci

Thus, from (4.4), we infer Bi+1 = Ci+1, implying Ai = Ai−1. Similarly, from (4.7) and (4.9),
we deduce:

(4.22) Ai−1 = Ai = Ai+2 = Ai+3

For ∆Chi, assume F ′
i = Fi, G

′
i = Gi, and Ei and E ′

i differ in all bits. Then:

(4.23) ∆Chi = 0 if and only if Fi = Gi

Consequently, from (4.12) and the result in (4.20), we deduce Fi+5 = Gi+5, leading to:

(4.24) Ei+4 = Ei+3

Solving (4.14) requires slightly different reasoning. If Ei+6 = E ′
i+6, Gi+6 = G′

i+6, and Fi+6

and F ′
i+6 differ in every bit (which they do, as shown in (4.20)), then:

(4.25) ∆Chi+6 = 0 if and only if Ei+6 = 0.

Similarly, from (4.15), we get:

(4.26) Ei+7 = −1

The final condition is given by (4.11):

(4.27) ∆Chi+4 = Ch(Ei+4, Fi+4, G
′
i+4)− Ch(Ei+4, Fi+4, Gi+4) = −1

SHA-256 STEP REDUCTION AND COLLISION ANALYSIS 7

Given that the words Ei+4, Fi+4, and Gi+4 satisfy the earlier conditions, there are no degrees
of freedom left to control the solution of this equation precisely. Thus, we estimate the
probability that this condition holds. It holds if and only if Ei+4 has 0’s in the bits where
G′

i+4 and Gi+4 differ. The difference between G′
i+4 and Gi+4 may be in the last i bits, where

1 ≤ i ≤ 32, and these bits are uniquely determined. Therefore, the probability is:

32∑
i=1

P{Last i bits of Ei+4 are zero}×P{Difference in exactly i last bits} =
32∑
i=1

1

2i
× 1

2i
≈ 1

3
.

Thus, the overall probability of this differential is 1
3
= 2−1.58. The differences in the message

words of the differential are as follows:

δ1 = −1−∆Chi+1(1, 0, 0)−∆Σ1(Ei+1),

δ2 = −∆Σ1(Ei+2)−∆Chi+2(−1, 1, 0),

δ3 = −∆Chi+3(0,−1, 1),

δ4 = −1.

Notice that the condition (4.22) implies that Ai = Bi must hold.

We observe that the words m5, m6, m7, m8, and m13 are each used only once in the first 20
steps of SHA-256 (Please see Table 2), meaning they are not used to compute the expanded
words beyond step 14: W15, W16, W17, W18, and W19. For the 20-step collision attack, i is
set to 5, so i + 9 equals 14. Because the perturbations introduced in Table 1 do not affect
steps beyond 14, as seen in Table 2, this differential allows us to find a collision. Therefore,
a collision can be found for the 20-step reduced SHA-256 and the probability of this collision
occurring is 2−1.58.

5. 21-step and 23-step reduced SHA-256 collision

21-Step Collision. The 21-step reduced SHA-256 introduces an additional level of com-
plexity by extending the differential attack by one more step.

Differential Construction. For the 21-step collision, differences are introduced in the message
words m6,m7,m8,m9, and m14. m6,m7, and m8 are only used once in the first 21 steps hence
the message expansion in the first 21 steps is irrelevant with respect to these words. But
as seen in Table 2, m9 and m14 are used in ≥ 1 in the first 21 steps. So, we have to find
a m9,m

′
9,m14, and m′

14 such that the message expansion will not introduce any differences
past the fourteenth step. From Table 2 we see that m9 and m14 are used in W16,W18, and
W20 giving us the following equations:

8 MIHIR GUPTA mihirgupta292@gmail.com

∆W16 = ∆σ1(m14) + ∆m9 +∆σ0(m1) + ∆m0 = 0

∆W17 = ∆σ1(m15) + ∆m10 +∆σ0(m2) + ∆m1 = 0

∆W18 = ∆σ1(W16) + ∆m11 +∆σ0(m3) + ∆m2 = 0

∆W19 = ∆σ1(W17) + ∆m12 +∆σ0(m4) + ∆m3 = 0

∆W20 = ∆σ1(W18) + ∆m13 +∆σ0(m5) + ∆m4 = 0

If m′
i = mi (W

′
i = Wi), then ∆σ0(mi) = 0 (∆σ0(Wi) = 0). This implies ∆W17 = ∆W19 = 0.

If ∆W16 = 0, then ∆W18 = ∆W20 = 0. This leads to the equation:

∆σ1(m14) + ∆m9 = 0

[1] found that the probability of finding a 21-step collision using the above methodology is
2−19.

Execution of the Attack. The attack follows a similar procedure as the 20-step attack. By
step 21, the differentials cancel out, leading to a collision with a probability of approximately
2−19.

23-Step Semi-Free Start Collision. The 23-step reduced SHA-256 attack operates under
semi-free start conditions, where we have control over the initial state h0.

The semi-free start collision attack involves introducing differences in the message words
m9,m10,m11, and m12. The differential propagation for this attack is governed by equations
derived in a manner similar to 21-steps reduced SHA-256. The goal is to ensure that by the
23rd step, the differences cancel out, resulting in a collision with a probability of approxi-
mately 2−21 [1]. [1] also shows a semi-free start near collision with hamming distance of 15
bits with probability of 2−34 for 25 step-reduced SHA-256.

Second-Order Differential Collision. [2] using the theory of higher order differentials
shows a collision for 47-step reduced SHA-256 with 246 complexity. The 47-step attack
involves a forward phase and a backward phase. In the backward phase, differentials are
applied starting from step 22 back. The forward phase applies differentials from step 22 to
step 47.

Key components of this attack are:

(1) Linearization: The SHA-256 compression function is approximated by linearizing
the modular additions and replacing them by the XOR operations.

(2) Boolean Function Approximation: Boolean functions f0 (i.e. Maj) and f1
(i.e. Ch) in SHA-256 are approximated by the 0-function, except in the jth bit,
where either ∆A[j] = ∆B[j] = ∆C[j] = 1 or ∆F [j] = ∆G[j] = 1.

6. Conclusion

This paper details various step-reduced collision attacks on SHA-256 hash. These attacks
highlight the vulnerability of the compression function under certain conditions. They reveal

SHA-256 STEP REDUCTION AND COLLISION ANALYSIS 9

potential weaknesses in the SHA-2 family of hash functions and highlights the importance
of ongoing evaluation and the need for robust cryptographic standards.

References

[1] I. Nikolić and A. Biryukov, “Collisions for step-reduced sha-256,” in Fast Software Encryption: 15th In-
ternational Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers
15. Springer, 2008, pp. 1–15.

[2] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-order differential collisions for reduced
sha-256,” in Advances in Cryptology–ASIACRYPT 2011: 17th International Conference on the The-
ory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings 17. Springer, 2011, pp. 270–287.

Appendix

Listing 1. Python code for calculating SHA-256 hash.
””” This Python module i s an implementation o f the SHA−256 a lgor i thm .

From https :// github . com/keanemind/Python−SHA−256”””

K = [

0 x428a2f98 , 0x71374491 , 0 xb5c0fbcf , 0xe9b5dba5 , 0x3956c25b , 0 x59f111f1 , 0 x923f82a4 , 0xab1c5ed5 ,

0xd807aa98 , 0x12835b01 , 0x243185be , 0x550c7dc3 , 0x72be5d74 , 0 x80deb1fe , 0x9bdc06a7 , 0 xc19bf174 ,

0xe49b69c1 , 0 xefbe4786 , 0 x0fc19dc6 , 0 x240ca1cc , 0 x2de92c6f , 0x4a7484aa , 0x5cb0a9dc , 0x76f988da ,

0x983e5152 , 0xa831c66d , 0xb00327c8 , 0 xbf597fc7 , 0 xc6e00bf3 , 0xd5a79147 , 0x06ca6351 , 0x14292967 ,

0x27b70a85 , 0x2e1b2138 , 0 x4d2c6dfc , 0x53380d13 , 0x650a7354 , 0x766a0abb , 0 x81c2c92e , 0x92722c85 ,

0 xa2bfe8a1 , 0xa81a664b , 0xc24b8b70 , 0xc76c51a3 , 0xd192e819 , 0xd6990624 , 0 xf40e3585 , 0x106aa070 ,

0x19a4c116 , 0x1e376c08 , 0x2748774c , 0x34b0bcb5 , 0x391c0cb3 , 0x4ed8aa4a , 0 x5b9cca4f , 0 x682e6f f3 ,

0 x748f82ee , 0 x78a5636f , 0x84c87814 , 0x8cc70208 , 0 x90be f f f a , 0xa4506ceb , 0 xbef9a3f7 , 0 xc67178f2

]

de f generate hash (message : bytearray) −> bytearray :

””” Return a SHA−256 hash from the message passed .

The argument should be a bytes , bytearray , or

s t r i n g ob j e c t . ”””

i f i s i n s t a n c e (message , s t r) :

message = bytearray (message , ’ a s c i i ’)

e l i f i s i n s t a n c e (message , bytes) :

message = bytearray (message)

e l i f not i s i n s t a n c e (message , bytearray) :

r a i s e TypeError

Padding

length = len (message) ∗ 8 # len (message) i s number o f BYTES ! ! !

message . append (0 x80)

whi le (l en (message) ∗ 8 + 64) % 512 != 0 :

message . append (0 x00)

message += length . t o by t e s (8 , ’ b ig ’) # pad to 8 bytes or 64 b i t s

a s s e r t (l en (message) ∗ 8) % 512 == 0 , ”Padding did not complete p roper ly ! ”

Pars ing

b locks = [] # conta in s 512− b i t chunks o f message

f o r i in range (0 , l en (message) , 6 4) : # 64 bytes i s 512 b i t s

b locks . append (message [i : i +64])

Set t ing I n i t i a l Hash Value

h0 = 0 x6a09e667

h1 = 0xbb67ae85

h2 = 0 x3c6ef372

h3 = 0 xa54 f f53a

h5 = 0x9b05688c

10 MIHIR GUPTA mihirgupta292@gmail.com

h4 = 0 x510e527f

h6 = 0 x1f83d9ab

h7 = 0x5be0cd19

SHA−256 Hash Computation

f o r message block in b locks :

Prepare message schedu le

message schedule = []

f o r t in range (0 , 6 4) :

i f t <= 15 :

adds the t ’ th 32 b i t word o f the block ,

s t a r t i n g from l e f tmos t word

4 bytes at a time

message schedule . append (bytes (message block [t ∗4 : (t ∗4)+4]))

e l s e :

term1 = sigma1 (i n t . f rom bytes (message schedule [t −2] , ’ b ig ’))

term2 = i n t . f rom bytes (message schedule [t −7] , ’ b ig ’)

term3 = sigma0 (i n t . f rom bytes (message schedule [t −15] , ’ b ig ’))

term4 = i n t . f rom bytes (message schedule [t −16] , ’ b ig ’)

append a 4−byte byte ob j e c t

schedu le = ((term1 + term2 + term3 + term4) % 2∗∗32) . t o by t e s (4 , ’ b ig ’)

message schedule . append (schedu le)

a s s e r t l en (message schedule) == 64

I n i t i a l i z e working v a r i a b l e s

a = h0

b = h1

c = h2

d = h3

e = h4

f = h5

g = h6

h = h7

I t e r a t e f o r t=0 to 63

f o r t in range (6 4) :

t1 = ((h + capsigma1 (e) + ch (e , f , g) + K[t] +

i n t . f rom bytes (message schedule [t] , ’ b ig ’)) % 2∗∗32)

t2 = (capsigma0 (a) + maj (a , b , c)) % 2∗∗32

h = g

g = f

f = e

e = (d + t1) % 2∗∗32

d = c

c = b

b = a

a = (t1 + t2) % 2∗∗32

Compute in te rmed ia te hash value

h0 = (h0 + a) % 2∗∗32

h1 = (h1 + b) % 2∗∗32

h2 = (h2 + c) % 2∗∗32

h3 = (h3 + d) % 2∗∗32

h4 = (h4 + e) % 2∗∗32

h5 = (h5 + f) % 2∗∗32

h6 = (h6 + g) % 2∗∗32

h7 = (h7 + h) % 2∗∗32

return ((h0) . t o by t e s (4 , ’ b ig ’) + (h1) . t o by t e s (4 , ’ b ig ’) +

(h2) . t o by t e s (4 , ’ b ig ’) + (h3) . t o by t e s (4 , ’ b ig ’) +

(h4) . t o by t e s (4 , ’ b ig ’) + (h5) . t o by t e s (4 , ’ b ig ’) +

(h6) . t o by t e s (4 , ’ b ig ’) + (h7) . t o by t e s (4 , ’ b ig ’))

de f s igma0 (num: i n t) :

SHA-256 STEP REDUCTION AND COLLISION ANALYSIS 11

”””As de f ined in the s p e c i f i c a t i o n . ”””

num = (r o t a t e r i g h t (num, 7) ˆ

r o t a t e r i g h t (num, 18) ˆ

(num >> 3))

re turn num

def s igma1 (num: i n t) :

”””As de f ined in the s p e c i f i c a t i o n . ”””

num = (r o t a t e r i g h t (num, 17) ˆ

r o t a t e r i g h t (num, 19) ˆ

(num >> 10))

re turn num

def capsigma0 (num: i n t) :

”””As de f ined in the s p e c i f i c a t i o n . ”””

num = (r o t a t e r i g h t (num, 2) ˆ

r o t a t e r i g h t (num, 13) ˆ

r o t a t e r i g h t (num, 22))

re turn num

def capsigma1 (num: i n t) :

”””As de f ined in the s p e c i f i c a t i o n . ”””

num = (r o t a t e r i g h t (num, 6) ˆ

r o t a t e r i g h t (num, 11) ˆ

r o t a t e r i g h t (num, 25))

re turn num

def ch (x : int , y : int , z : i n t) :

”””As de f ined in the s p e c i f i c a t i o n . ”””

return (x & y) ˆ (˜x & z)

de f maj (x : int , y : int , z : i n t) :

”””As de f ined in the s p e c i f i c a t i o n . ”””

return (x & y) ˆ (x & z) ˆ (y & z)

de f r o t a t e r i g h t (num: int , s h i f t : int , s i z e : i n t = 3 2) :

””” Rotate an i n t e g e r r i g h t . ”””

return (num >> s h i f t) | (num << s i z e − s h i f t)

i f name == ” main ” :

p r i n t (generate hash (” He l lo ”) . hex ())

Listing 2. Example SHA-256 hashes

Examples

p r in t (generate hash (” He l lo World”) . hex ())

a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f146e

p r in t (generate hash (” He l lo ”) . hex ())

185 f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969

pr in t (generate hash (” He l la ”) . hex ())

62197 ce641a17c96c f39ed51e72e86 fd486f3de7b0135f8b8f0 f7364dc010e54

12 MIHIR GUPTA mihirgupta292@gmail.com

Table 2. Message expansion of SHA-256. There is ’x’ in the intersection of
row with index i and column with index j if Wi uses mj.

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 x
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x
10 x
11 x
12 x
13 x
14 x
15 x
16 x x x x
17 x x x x
18 x x x x x x
19 x x x x x x x
20 x x x x x x x x x x
21 x x x x x x x x x x
22 x x x x x x x x x x x x x

	1. Introduction
	2. Mathematical Description of SHA-256
	3. Types of Collision Attacks
	3.1. Collision Attack
	3.2. Semi-Free Start Collision Attack
	3.3. Near Collision Attack

	4. Technique for Collision Creation
	4.1. Conditions for Local Collisions
	4.2. Solving the Equations

	5. 21-step and 23-step reduced SHA-256 collision
	21-Step Collision
	23-Step Semi-Free Start Collision
	Second-Order Differential Collision

	6. Conclusion
	References
	Appendix

