
Lattice-Based Cryptography

Mihika Deshpande

August 18, 2024

1 Introduction

In 1981, Richard Feynman proposed the creation of the quantum computer,
using entangled quantum objects to model physical objects. Such a computer
could handle calculations simultaneously and process data faster than current
computers. Quantum computing poses a significant risk to current cryptography
schemes because they can no longer rely on the limitations of computing power
to prevent attackers from learning the private key as security [8].

However, cryptography schemes based on lattices have proven secure against
quantum computing because they rely on the complexity of difficult lattice prob-
lems instead of relying on number factoring like classical algorithms. As such,
it’s important to explore the potential usage and implementation of lattice-based
cryptography systems [9].

The use of lattices in mathematics traces back to at least the 18th century,
but the use of lattices in cryptography began during the early 1980s. At first,
lattices were explored as a means of attacking existing cryptographic schemes,
but by the 1990s, the exploration of lattice-based cryptographic schemes was
underway [7]. The past few decades have seen significant advancements in the
development of secure cryptographic schemes, including the creation of N-th
degree Truncated polynomial Ring Units (NTRU), a public-key cryptosystem,
Kyber, a key encapsulation mechanism, and Dilithium, a digital signing scheme
[9].

The following paper will explore the foundations of lattice-based cryptography,
analyze various lattice-based cryptography systems from the past few decades,
and evaluate the security of lattice-based cryptography.

2 Mathematical Foundations of Lattices

Lattice-based cryptography involves using lattices, or grids formed by sets of
vectors, and computationally hard problems associated with lattices to encode
and decode information.

1

Mihika Deshpande

2.1 Definitions

We can start by providing formal definitions of concepts related to lattices to
provide context for the following sections.

Definition 1. A lattice, L is a partially ordered set with the property that
every a, b ∈ L has a least upper bound and a greatest lower bound.

In other words, a lattice is a discrete additive subgroup of Rn [3]. One of the
advantages of using lattices in cryptography, is that they require a minimal
amount of space to store. This is because lattices can be defined by a basis, so
only the basis of a lattice needs to be stored, not the actual points.

Definition 2. The basis of a lattice is a set of vectors, B = (b1, b2, ...bn) that
defines a lattice.

Ex: The set of vectors, (0, 1) and (1, 0) is the basis for the lattice formed with
integer coordinates.

The function f that maps all bases to their lattices is surjective, meaning that
a lattice can have multiple bases, but each basis only generates one lattice. For
example, the set of vectors (7, 3) and (2, 1) are also the basis for the lattice
formed with integer coordinates.

(0 0)

b1

b2

b3

b4

Figure 1: Multiple bases for lattices[11].

One feature of lattices and their bases is the fundamental parallelepiped formed
by the basis, which plays a role in signature schemes.

Definition 3. The fundamental parallelepiped measures the density of the
lattice, where P =

∑
i bi · [−

1
2 ,

1
2).

In the above definition, we use the interval [− 1
2 ,

1
2) instead of [0, 1) to center

the fundamental parallelepiped around the origin, rather than have the origin
at each of the vertices.

The fundamental parallelepiped is important as it completely fills the spaces
between the lattice points with no overlap, effectively relating lattice points

2

Mihika Deshpande

to points not on the lattice. We can prove this using the definition of the
fundamental parallelepiped:

Theorem 1.
Rn =

⋃
v∈L

v + P (B)

Parallel translations of the fundamental parallelepiped by lattice vectors covers
the entirety of Rn with no overlap [3].

Proof. For a point p ∈ Rn, where xi is the coordinates of p:

p =
∑
i

xibi

=
∑
i

⌈xi⌋bi +
∑
i

(xi − ⌈xi⌋)bi.

Since, − 1
2 ≤ (xi − ⌈xi⌋) < 1

2 , ∑
i

⌈xi⌋bi ∈ L

and ∑
i

(xi − ⌈xi⌋)bi ∈ P (B)

Therefore, Rn =
⋃

v∈L v + P (B).

2.2 Hard Lattice Problems

There are several problems in lattices that are hard to solve without access to
specific information about the problem, making them ideal for cryptography
schemes.

Shortest Vector Problem (SVP): Find minv∈L||v||.

The SVP problem to find the shortest vector in the lattice (i.e. the point closest
to the origin), given the basis of a lattice.

This is easier to find the more ”square” a set of vectors is, and harder to find
the closer together vectors are. [3]

Closest Vector Problem (CVP): Given vector t, find v ∈ L : minv∈L||dist(v−
t)||

The objective is, given a point t not on the lattice, to find the vector v that is
closest to the point. This problem is hard, especially with bad bases, because
lattice points that are far from t may be vectors v that are very close to t. [9]

3

Mihika Deshpande

(0 0)

v1

v2

Figure 2: Close vectors to a point not on the lattice [11].

Learning With Errors (LWE) The LWE problem is given n input pairs
(ai, bi):

ai ∈ Xn
p

bi = ai · s+ e (mod q).

where e is some small error vector that adds noise, find an s, such that all of
the n pairs are valid [10]. The added noise adds the complexity to the problem.

Eventually, the problem simplifies down to the SVP problem.

An example of a simple cryptography scheme based on LWE would be, to start
with a square matrix A and a vector s. Using these two, we can generate a
vector b, using the following equation, where e is error:

b = s ·A+ e.

Since it’s hard to recover s from b and A, we can use this in a Diffie-Helman
exchange, where Alice’s private key is s and public key is b and A is a publicly
available matrix. [6]

2.3 Good and Bad Bases

The difficulty of solving lattice problems often depends on the type of basis
provided. Given any two sets of bases, (a1, a2, ..., an) and (b1, b2, ..., bn) that
generate the same lattice, if (a1, a2, ..., an) is more ”square” than (b1, b2, ..., bn),
as in the vectors in (a1, a2, ..., an) are closer to perpendicular than the vectors in
(b1, b2, ..., bn), then it’s easier to solve lattice problems with (a1, a2, ..., an) than
(b1, b2, ..., bn) [9].

3 NTRU

The Nth-degree Truncated polynomial Ring Unit (NTRU) cryptosystem was
created by Jeffery Hoffstein, Joseph Silverman, and Jill Pipher in 1996 [5].

4

Mihika Deshpande

3.1 Key Creation

The NTRU cryptosystems begins with three numbers, (N, p, q), where p and q
are coprime. We can define the following:

N → A positive integer

q → A large modulus

p → A small modulus, relatively prime to q

T → The truncated ring of polynomials with a degree of at most N − 1.

For some integer k, let
Zk = 0, 1, ..., k − 1

Then, let T be the set of polynomials with degree N − 1 where the coefficients
of the terms in the polynomials are in Zk. This means that for some a, b ∈ T :

a = a0 + a1x+ a2x
2 + ...an−1x

n−1

b = b0 + b1x+ b2x
2 + ...bn−1x

n−1

a+ b = (a0 + b0) + (a1 + b1)x
1 + (a2 + b2)x

2 + ...+ (an−1 + bn−1)x
n−1

a · b = (a0b0) + (a0a1 + b0a1)x1 + (a0b2 + a1b1 + b0a2)x
2 + ...+ (an−1bn−1)x

2n−2

= (a0b0) + (a0a1 + b0a1)x1 + (a0b2 + a1b1 + b0a2)x
2 + ...+ (an−1bn−1)x

n−2.

For a · b, there are two truncating procedures: If the degree of the polynomial is
greater than or equal to N, we take the modulus of the degree for the new term.
We also take the modulus of the coefficients of all of the terms at the end.

Example 3.1. Suppose N = 4, k = 3 : If the resulting polynomial after multi-
plication is x5 + 4x3 + 3x, then after taking the modulus of the degree and the
coefficients, we get:

x5 + 4x3 + 3x

=x+ 4x3 + 3x

=x3 + x.

Since Zk is a group, T is closed under addition and multiplication.

To create the secret key, Alice can pick two polynomials, f and g, of degree
N − 1, where f has an inverse modulo p, Fp, and modulo q, Fq, such that,

ffp ≡ 1 (mod p)

and
ffq ≡ 1 (mod q)

5

Mihika Deshpande

Next, Alice computes the polynomial h,

h = pfqg (mod q).

Alice’s private key is f and fp, and Alice’s public key is h.

3.2 Encryption

To encrypt a message to send to Alice, Bob can use Alice’s public key, h. NTRU
allows one entity to send a polynomial to another, so Bob must first convert his
message into the form of a polynomial m with coefficients modulo p. He can do
this by converting his message into binary, and then having the 1s and 0s as
coefficients.

Example 3.2. To encrypt the message code:

c → 3 = 000112

o → 15 = 011112

d → 4 = 001002

e → 5 = 001012

We can translate the binary strings into polynomials:

c → m1 = x+ 1

o → m2 = x3 + x2 + x+ 1

d → m3 = x2

e → m4 = x2 + 1

The block size for messages depends on how large N is so if N ≥ 20, we could
send the message, code in one block.

Bob also chooses a random polynomial r, which is relatively small modulo q,
which can be used to obscure the message.

Finally, Bob computes the encrypted polynomial message e,

e = rh+m (mod q).

6

Mihika Deshpande

3.3 Decryption

In order for Alice to decrypt the polynomial message e, she can use her secret
key for the following computations:

a = fe (mod q)

a = rpg + fm.

b = a (mod p)

c = fpb (mod p)

These operations can be further simplified to prove that they yield the polyno-
mial message:

a = fe (mod q)

= f(rh+m) (mod q)

= f(rpfqg +m) (mod q)

= frpfqg + fm (mod q)

= rpg + fm (mod q).

From here, we can draw the conclusion that a = rpg+fm exactly, because in the
setup of NTRU, we guaranteed that r and g are a relatively small polynomials,
and p is a small modulus, so multiplying them together will result in a product
that is already reduced modulo q.

Next, we can simplify the calculation for b :

b = a (mod p)

= rpg + fm (mod p)

= fm (mod p).

Lastly, we can simplify the calculation for c :

c = fpb (mod p)

= fpfm (mod p)

= m (mod p).

Therefore, Alice is able to decrypt the message [4].

7

Mihika Deshpande

3.4 Security

The security of NTRU depends on the fact that it uses the shortest vector
problem, which is NP-hard for randomized reductions. While it’s possible to
break NTRU in around 40 minutes using a lattice-based attack when N = 100,
increasing the size of N to 500 increases the break-time to around 8.4 years [4].

4 CRYSTAL-Kyber

CRYSTAL-Kyber is a key encapsulation mechanism (KEM) and public-key en-
cryption (PKE) method, used to share a secret key between two parties without
leaking it to attackers, created by Joppe Bos, Léo Ducas, Eike Kiltz, and more
in 2018 [2].

Kyber relies on the Ring Learning With Errors (Ring-LWE) problem. This is a
lattice-based problem which conceals a secret polynomial by adding noisy data
[6].

4.1 Required Mathematics

We can start by defining a polynomial ring R = Zp[X]/(Xn + 1)

Let a(x) ∈ R be the polynomial we are trying to conceal. Then, let e(x), s(x) ∈
R, where both polynomials have small coefficients. Concealing a(x), we get
b(x) ∈ R, where

b(x) = a(x) · s(x) + e(x)

Multiplication over a polynomial ring uses a circulant matrix.

Definition 4. Given a sequence s = {a1, a2, ...an}, A circulant matrix c is
a square, n × n matrix, where the first column contains the elements of s in
order, and each subsequent column is formed by cycling each element down one
position from the previous column. The element in the last position is cycled
to the first position.

Example 4.1. If n = 3 and sequence s = {1, 2, 3}, then c =

1 3 2
2 1 3
3 2 1

.
To multiply two polynomials a and b, where a, b ∈ R we can first convert a
into a circulant matrix A, with the added condition that every element that is
placed above it’s original position in a column, that column is negated. Then
we can convert b into the n × 1 matrix B with the sole column containing the
coefficients of b in order, and then multiply A and B, and then modulo p, which
gives us the coefficients of the polynomial c = a · b.

8

Mihika Deshpande

Example 4.2. Let a, b ∈ Z17[X]/(X3 − 1)

a = 12x2 + x+ 16

b = 2x2 + 3x+ 14.

Next, we can convert a into a circulant matrix A and b into matrix B. Multi-
plying A and B, gives us:12 −16 −1
1 12 −16
16 1 12

×

 2
3
14

 =

 −38
−186
203

 .

Then, taking modulo 17 of the final above product, we get, c =

131
16

 .

This gives us the final polynomial product of a× b = 13x2 + x+ 16. [6]

4.2 PKE Key Creation

Kyber has several sets of parameters for different levels of security; Kyber512
has the following parameters: n = 256, k = 2, q = 3329.

We can start by generating a private key, s, which has k polynomials where all
polynomials are in R, and all of them have small coefficients.

s = (s1, ..., sk).

For the purpose of this explanation, we can define what relatively small means.

Definition 5. A relatively small polynomial in some polynomial ring, Zp[X]/(Xn+
1) is a polynomial such that the absolute value of each of its coefficients is rel-
atively small compared to p.

For the purpose of our example, p = 17, so coefficients c ∈ {−1, 0, 1} will be
considered relatively small. (See Kyber Decryption for the rationale behind
using small polynomials).

Then we can generate the public key, which consists of two parts, a matrix A
and a vector t. We can generate A, a k × k matrix with random polynomials,
with coefficients less than q. Then, vector t = A·s+e, where e is a random vector
with small coefficients. Because of the LWE problem, a third party cannot figure
out s from just A and t. [6]

4.3 PKE Encryption

We first convert the message to binary and convert the binary to a polynomial,
where the place of the binary number is the power of the term and the value

9

Mihika Deshpande

is the coefficient. Then we can multiply the polynomial by ⌊ q
2⌉, yielding our

message polynomial m.

Then we need to generate two random sets of k small polynomials in R, r and
e1, and one random small polynomial in R, e2.

To encrypt m, we calculate the set of k polynomials, u and the polynomial t [6]:

u = AT r + e1

v = tT r + e2 +m.

where T is a transposition.

4.4 PKE Decryption

We can use the secret key s to uncover the noisy message m from u and v :

m = v − sTu.

We can prove this works by substituting the encryption equations for u and v
and simplifying using transposition properities.

Proof.

m = v − sTu

= tT r + e2 +m− sT (AT r + e1)

= tT r + e2 +m− (A · s)T r + sT e1

= tT r + e2 +m− (t− e)T r + sT e1

= tT r + e2 +m− (t− e)T r + sT e1

= tT r + e2 +m− tT r − eT r + sT e1

= eT r + e2 +m+ sT e1

This gives us the noisy message m. To retrieve the true polynomial message,
we can compare m to the nearest valid message. This is made possible by the
earlier usage of relative small polynomials.

We require relatively small polynomials, because Kyber relies on the LWE prob-
lem, meaning that some minimal error is added as noise to an encryption to make
decryption more difficult without the secret key. Once we have retrieved the

10

Mihika Deshpande

noisy message, we know that there are only a few valid polynomial messages,
since there are only a few possible combinations of coefficients which could be
used in the original message: (−1, 0, 1).

We want to ensure that our noisy message is close to one valid message (In other
words, its a point not on the lattice, and our actual message is the closest point
on the lattice) so that we can undo the noise. However, this is complicated by
the use of modulo q. If our final product ends up too close to q, it could end
up exceeding q and becoming an integer close to 0. This means that we want
to the coefficients of our polynomials to be as close to inbetween 0 and q as
possible, hence we multiply by ⌈ q

2⌋ to scale up the polynomial message before
adding noise in encryption.

Given a noisy message m, we can start by rounding each coefficient to the
nearest value: ⌈ q

2⌋ or O, q. This removes the errors that previously obscured the
message.

Then we can undo our scaling by dividing by ⌈ q
2⌋, which gives us our original

polynomial message. [6]

4.5 Example

For clarity, we will use reduced values for the demonstration of Kyber-PKE.

Let

n = 4

k = 2

q = 17

R = Z17[X]/(X4 + 1).

Next we can create our secret key s with k = 2 polynomials with small coeffi-
cients (−1, 0, 1) :

s =

(
−x3 + x2 + 1
x3 + x− 1

)
For our public key, we can create a random matrix A and a small error vector
e to generate a vector t.

A =

(
6x3 + 15x2 + 5x+ 14, 3x3 + 10x2 + 5x+ 11
8x3 + 12x2 + 4x+ 10, 16x3 + 4x2 + 2x+ 13

)

e =

(
x3 + x
x2

)
Then we can calculate t = A · s+ e.

11

Mihika Deshpande

t =

(
6x3 + 15x2 + 5x+ 14, 3x3 + 10x2 + 5x+ 11
8x3 + 12x2 + 4x+ 10, 16x3 + 4x2 + 2x+ 13

)
·
(
−x3 + x2 + 1
x3 + x− 1

)
+

(
x3 + x
x2

)

t =

(
(−35x3 − 14x2 − 4x− 3) + (8x3 + 4x2 + 19x+ 18)
(−30x3 − 8x2 − 2x+ 2) + (18x3 − 7x2 + 31x+ 1)

)
+

(
x3 + x
x2

)

t =

(
8x3 + 2x2 + 16x+ 15
5x3 + 3x2 + 12x+ 3

)
Our private key is s, and our public key is (A, t).

To encrypt the message code, we first convert each letter’s position in the
alphabet into binary (or ternary, since −1 is an option as well):

c → 3 = 00112

o → 15 = 11112

d → 4 = 01002

e → 5 = 01012

Each binary string becomes a message to be sent using Kyber-PKE.

c → m1 = x+ 1

o → m2 = x3 + x2 + x+ 1

d → m3 = x2

e → m4 = x2 + 1

These form the following polynomial values Typically, we would use ASCII
values and encode larger blocks of the message, as opposed to alphabet positions
and one letter at a time, however, because we are using a small n, and only
alphabet letters in our message, we can use the letter positions.

Next, we can scale the messages by q
2 = 9, giving us:

m1 = 9x+ 9

m2 = 9x3 + 9x2 + 9x+ 9

m3 = 9x2

m4 = 9x2 + 9

12

Mihika Deshpande

To generate the ciphertext, we have to generate five (two for r, two for e1, one
for e2) random small polynomials:

r =

(
x3 + 1
x2 + x

)
e1 =

(
x3 − x− 1
−x2 + 1

)
e2 = (−x2 + x− 1).

Using r, e1, and e2 we can generate the ciphertext (u, v) for m1 :

u =

(
6x3 + 15x2 + 5x+ 14, 8x3 + 12x2 + 4x+ 10
3x3 + 10x2 + 5x+ 11, 16x3 + 4x2 + 2x+ 13

)
·
(
x3 + 1
x2 + x

)
+

(
x3 − x− 1
−x2 + 1

)

u =

(
12x3 + 8x2 + 10x+ 1
12x3 + 7x2 + 14x+ 4

)

v =
(
8x3 + 2x2 + 16x+ 15, 5x3 + 3x2 + 12x+ 3

)
·
(
x3 + 1
x2 + x

)
+(−x2+x−1)+9x+9

v = 4x3 + 15x2 + 2x+ 12

This gives us our ciphertext, (u, v).

Now, we can decrypt the ciphertext. First we can extract the noisy message
mn1

:

mn = (4x3 + 15x2 + 2x+ 12)−
(
−x3 + x2 + 1, x3 + x− 1

)
·
(
12x3 + 8x2 + 10x+ 1
12x3 + 7x2 + 14x+ 4

)
= (4x3 + 15x2 + 2x+ 12)− (x3 + 11x2 + 10x+ 3)

= 3x3 − 4x2 − 8x+ 9

= 3x3 + 13x2 + 9x+ 9.

To remove the noise, we can round each coefficient to the nearest value (9 or
0, 17), giving us, 9x+ 9

Lastly, we can divide by 9, giving us the original message: x+ 1.

We would repeat this process for the next three blocks to send the full message.

13

Mihika Deshpande

4.6 Security

The security of Kyber-PKE is based on the hardness of the LWE problem over
module lattices. The LWE problem is as hard as worst case lattice problems,
and can be reduced to the SVP problem, leading to the same conclusion of
algorithms based on LWE being secure [1].

References

[1] David Balbás. “The Hardness of LWE and Ring-LWE: A Survey”. In:
Cryptology ePrint Archive (2021). url: eprint.iacr.org/2021/1358.
pdf.

[2] Joppe Bos et al. “Crystals - Kyber: A CCA-secure module-lattice-based
KEM”. In: 2018 IEEE European Symposium on Security and Privacy
(2018). doi: 10.1109/eurosp.2018.00032.

[3] Dong Pyo Chi et al. Lattice Based Cryptography for Beginners. Cryptology
ePrint Archive, Paper 2015/938. 2015. url: eprint.iacr.org/2015/938.

[4] Benjamin Clark.Understanding the NTRU cryptosystem. 2023. url: ideaexchange.
uakron.edu/honors_research_projects/906/.

[5] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A ring-
based public key cryptosystem”. In: Algorithmic Number Theory 1423
(1998), pp. 267–288. doi: 10.1007/bfb0054868.

[6] Udara Pathum. Crystals Kyber: The key to Post-Quantum Encryption.
June 2024. url: medium.com/@hwupathum/crystals-kyber-the-key-
to-post-quantum-encryption-3154b305e7bd.

[7] Chris Peikert. Mathematical Background. 2013. url: web.eecs.umich.
edu/~cpeikert/lic15/lec01.pdf.

[8] Robert Relyea. Post-quantum cryptography: An introduction. 2022. url:
www.redhat.com/en/blog/post-quantum-cryptography-introduction.

[9] Robert Relyea. Post-quantum cryptography: Lattice-based cryptography.
2023. url: www.redhat.com/en/blog/post-quantum-cryptography-
lattice-based-cryptography.

[10] Aviad Rubinstein. Lecture 14: Learning with errors. 2019. url: web .

stanford.edu/class/cs354/scribe/lecture14.pdf.
[11] Bill Tourloupis. Example: Drawing lattice points and vectors. 2012. url:

texample.net/tikz/examples/lattice-points/.

14

