
POST-QUANTUM CRYPTOGRAPHY

MANU ISAACS

Contents

1. Intro 1
2. What Still Works? 2
3. Challenges with PQC 2
4. Lattices and Lattice Problems 2
4.1. Lattice Basics 2
4.2. Hard Lattice Problems 4
5. The LLL Lattice Reduction Algorithm 5
5.1. Linear Algebra Preliminaries 5
5.2. Gram–Schmidt Orthogonalization 6
5.3. The Algorithm 6
6. Lattice-Based Cryptography 8
6.1. A Provably Secure but Inefficient Cryptosystem - Ajtai and Dwork 8
6.2. An Efficient but not Secure Cryptosystem - GGH 10
6.3. Lattice-Based Hash Functions 10
6.4. An Efficient but not Provably Secure Cryptosytem - NRTU 11
7. Conclusion 12
References 12

1. Intro

On a classical computer, the cryptosystems we use today are safe. But in 1994, Peter
Shor changed the world forever by discovering an algorithm for solving the Integer Factor-
ization Problem (IFP), the Discrete Logarithm Problem (DLP) and even the Elliptic Curve
Discrete Logarithm Problem (ECDLP) in polynomial time on a quantum computer. Many
of the cryptosystems we use today, like RSA and (Elliptic Curve) Diffie-Hellman depend on
these problems for their security.

In this paper, we explore some of the ideas being developed in the relatively new field
of Post-Quantum Cryptography (PQC). PQC anticipates Q-day, the day when quantum
computers can solve IFP and (EC)DLP for cryptographically large numbers. When this day
arrives, the world should be ready for it - we should all be using so-called quantum safe
cryptosystems, which appear to be resistant to quantum computers.

In fact, there is an argument to switch to quantum safe cryptosystems as soon as possible,

Date: August 17, 2024.
1

2 MANU ISAACS

because of the so-called store now, decrypt later attack. One can store encrypted informa-
tion that is believed to be useful even after a long time, and then decrypt it on a quantum
computer on Q-day. This is arguably the most pressing argument for the importance of
PQC.

2. What Still Works?

As it turns out, there are many cryptosystems which appear to hold their own against
quantum computers. Some examples are:

(1) AES (for b ≤ 128),
(2) McEliece with code length b1+o(1),
(3) Merkle signatures with “strong” b1+o(1)-bit hash,
(4) HFEv- with b1+o(1) polynomials,
(5) NTRU with b1+o(1) bits, etc.

according to [1]. In general, quantum computers appear to have a minimal effect on sym-
metric key cryptography and hash-based cryptography. This is because the fastest quantum
algorithm for inverting a general function, called Grover’s algorithm, provides only a square
root speedup. This means that we achieve the same security simply by doubling the key
length.

3. Challenges with PQC

But if this is true, why isn’t post-quantum cryptography solved? There are 3 main reasons
[1]: efficiency, confidence, usability.

• Efficiency: Many post-quantum cryptographic schemes are computationally more
expensive than current ones. This poses a challenge for widespread adoption because
the internet infrastructure isn’t yet ready to handle the increased load.

• Confidence: While current post-quantum schemes appear resistant to known quan-
tum attacks, there’s always the possibility of new quantum algorithms emerging that
could break them.

• Usability: Post-quantum cryptography introduces new complexities. Ensuring se-
cure and practical implementations requires careful consideration of issues like padding
and parameter choices. The same thing happened with RSA - the original RSA paper
wasn’t secure and developments like padding needed to be made.

However, systems like lattice based cryptography and multivariate-quadratic cryptography
are new and promising proposals. In the remainder of the paper, we will discuss lattice-based
cryptography.

4. Lattices and Lattice Problems

4.1. Lattice Basics. What is a lattice? You might be familiar with the lattice of integer
points on the Cartesian plane L = Z2. More generally, we can define an n-dimensional lattice
as follows.

Definition 4.1. For a given set of linearly independent basis vectors {b1,b2, . . .bn} ∈ Zn,
define the lattice L as

L(b1,b2, . . .bn) =

{
n∑

i=1

xibi : xi ∈ Z

}
.

POST-QUANTUM CRYPTOGRAPHY 3

Defining the n× n matrix B = [b1,b2, . . .bn], we can more concisely write

L(B) = {Bx : x ∈ Zn} .

Example. The familiar lattice Z2 can be generated by the basis matrix

B =

[
1 0
0 1

]
among others.

Next we will prove some basic results to do with lattices.

Definition 4.2. A matrix U is unimodular if it is an integer square matrix with determinant
±1.

Theorem 4.3. For all matrices B and unimodular matrices U, (figure out how to make the
U not be italicized here)

L(B) = L(BU).

Proof. We will prove that L(B) ⊂ L(BU). If v ∈ L(B), then we can write v = Bx. Notice
that because U−1 is unimodular, x′ = U−1x ∈ Zn, so v = BUx′ hence v ∈ L(BU). A
similar argument shows L(BU) ∈ L(B) so we are done. ■

In fact, we can make an even stronger statement:

Theorem 4.4. Bases B1 and B2 generate the same lattice if and only if there exists some
unimodular matrix U such that B1 = UB2.

Proof. The “if” part of this statement is proven by 4.3. For the “only if” part, we can prove
the contrapositive. Begin by assuming that L(B1) ̸= L(B2). Then, WLOG we can say there
is some x ∈ L(B1) such that x /∈ L(B2). We let U = B1B

−1
2 , where we aim to show U is

not unimodular. For some vectors v1 and v2, we have

x = B1v1 ̸= B2v2 ∀v2 ∈ Zn

B1B
−1
2 v1 ̸= v2 ∀v2 ∈ Zn

Uv1 /∈ Zn

but this is impossible if U is unimodular, so we are done. ■

Example. Consider the basis

B1 =

[
1 3
2 4

]
which corresponds to the basis vectors v11 =

[
1
2

]
and v12 =

[
3
4

]
. Let’s try multiplying the

basis by the unimodular matrix

U =

[
1 1
0 1

]
.

Then, we have

B2 = UB1 =

[
1 4
2 6

]
.

4 MANU ISAACS

Figure 1. Two bases which generate the same matrix - U =

[
1 −1
1 0

]
.

Which corresponds to the basis vectors v21 =

[
1
2

]
and v22 =

[
4
6

]
. Notice that v21 = v11 and

v22 = v11 + v12. Drawing these four vectors gives a good intuitive understanding for why
they generate the same lattice.

Example. See figure 1.

Let’s define the determinant of a lattice:

Definition 4.5. The determinant of a lattice L is

d(L(B)) = |det(B)|

There are a few important things to notice: firstly, note that the determinant of a lattice
is independent of the choice of basis by 4.4 and the fact that all unimodular matrices U
satisfy |det(U)| = 1. Second, notice that the determinant of a lattice can be said to be equal
to its inverse point density, because it is the absolute volume of the parallelopiped created
by the basis vectors of L.

4.2. Hard Lattice Problems. In conventional cryptography, the trapdoor hard-to-invert
problem is often the IFP or (EC)DLP, both of which can be broken by a quantum computer
using Shor’s algorithm. The following three problems are considered hard problems and
provide the basis for Lattice-based cryptography.

All of these problems involve a notion of a norm of a vector. While different norms can
be used, the following norm is most common:

Definition 4.6. Define the norm, size, or magnitude of a vector v =
[
v1 v2 . . . vn

]
as

|v| =
√

v21 + v22 + · · ·+ v2n. This norm is called the Euclidean norm.

Remark 4.7. When we use words like ”shortest” and ”closest” we mean the vector with
minimum norm.

POST-QUANTUM CRYPTOGRAPHY 5

Definition 4.8. Shortest Vector Problem (SVP): Given a lattice basis B, compute the
shortest nonzero vector in L(B).

While this problem seems easy in two dimensions, it appears to get exponentially harder
in n, the number of dimensions.

Definition 4.9. Closest Vector Problem (CVP): Given a lattice basis B and vector t, com-
pute the vector closest to v in L(B).

While this problem isn’t precisely a generalization of the SVP (because of the nonzero
condition in the SVP), it is possible to relate the two problems. Specifically, if one has an
oracle for solving the SVP, they can solve the CVP.

Definition 4.10. Shortest Independent Vectors Problem (SIVP): Given a lattice basis B,
find the n linearly independent lattice vectors S =

[
s1, s2, . . . sn

]
such that maxi si is minimal.

It is more usual to use the approximate versions of these problems. They depend on
some approximation factor γ sometimes written as γ(n) because of its dependence on the
dimension n:

Definition 4.11. The SVPγ problem asks to find a vector of magnitude at most γ times
the magnitude of the smallest nonzero vector in L.

The definitions for CVPγ and SIVPγ are identical. The following conjecture [2] is what
makes these lattice-based problems so useful in cryptography:

Conjecture 4.12. There is no polynomial time algorithm (in the dimension n) to solve
any approximate lattice problem, where the approximation factor γ is polynomial in n, on a
classical or quantum computer.

This conjecture has some evidence to loosely back it up; there has been lots of relatively
recent improvement on the problem of factoring: the continued fractions factoring algorithm
in 1980, the quadratic sieve factoring algorithm in 1990, and the number field sieve in 1996 [3].
In contrast, there has been no significant improvement on this problem since the 1980s [2].

5. The LLL Lattice Reduction Algorithm

How do we solve Lattice problems? One method is a lattice reduction algorithm. Lattice
reduction algorithms aim to reduce the length of the basis, which is defined as follows:

Definition 5.1. The length of a basis B =
[
b1 b2 . . . bn

]
is maxi |bi|.

A small basis is the solution to the SIVP, which can also be efficiently used to solve the
SVP and CVP. The LLL lattice reduction algorithm [4] is the first polynomial time Lattice
reduction algorithm. It solves SVP and other lattice problems with γ(n) = 2O(n) in O(n6)
bit operations [2]. To understand it, we’ll first need some ideas from linear algebra.

5.1. Linear Algebra Preliminaries.

Definition 5.2. Given v,w ∈ Zn, let the standard inner product or dot product of v =[
v1 v2 . . . vn

]
and w =

[
w1 w2 . . . wn

]
, denoted by v ·w, be

v ·w =
∑
i

viwi.

6 MANU ISAACS

Remark 5.3. Notice that v · v = |v|2.

Definition 5.4. We say vectors v and w are orthogonal if v ·w = 0. A set of vectors vi is
orthogonal if vi · vj = 0 for i ̸= j.

How do we project a vector v onto a vector w? Intuitively, the projection projw(v) should
be parallel to w and v − projw(v) should be orthogonal to w. It is easy to check that the
following definition satisfies these two conditions.

Definition 5.5. The projection of v onto w is

projw(v) =
v ·w
w ·w

w.

5.2. Gram–Schmidt Orthogonalization. The Gram-Schmidt orthogonalization process,
or just Gram-Schmidt process, converts a set of basis vectors vi to an orthonormal basis ui

which has the same span over Rn (but not Zn in general). In English, we can describe it as
follows:

(1) Project vi onto the orthogonal subspace U generated by u1,u2 . . .ui−1.
(2) Let ui be the difference between vi and this projection so that ui is orthogonal to

u1,u2 . . .ui−1.

Notice that this process generates an orthogonal subspace by induction on i. Algebraically,
the algorithm can be written as

u1 = v1

u2 = v2 − proju1
v2

...

uk = vk −
k−1∑
j=1

projuj
(vk).

Equivalently, in the language of [4]:

Definition 5.6. For a given basis {bi} define the Gram-Schmidt orthogonalization as b∗
i

b∗
i = bi −

∑i−1
j=1 µijb

∗
j ,(5.1)

µij =
bi·b∗

j

b∗
j ·b∗

j
.(5.2)

So b∗
i is an orthogonal basis of Rn.

5.3. The Algorithm. For this algorithm, we’ll need a definition of what exactly we mean
by a reduced basis.

Definition 5.7. We call a basis {bi} reduced if

|µij| ≤ 1/2 for j < i(5.3)

|b∗
i + µi,i−1b

∗
i−1|2 ≥ 3

4
|b∗

i−1|2 for 1 < i ≤ n(5.4)

where the constants are arbitrarily chosen.

POST-QUANTUM CRYPTOGRAPHY 7

What makes this basis reduced? Intuitively, the first equation means that bi is close to
perpendicular to b∗

j for j ̸= i. The second equation essentially ensures that one vector isn’t
too much smaller than the next one.

More rigorously, we prove the following facts about a reduced basis:

Theorem 5.8. For a reduced basis {bi} of lattice L and corresponding Gram-Schmidt or-
thogonalization b∗

i given by 5.6,

|bj|2 ≤ 2i−1|b∗
i |2 for j ≤ i,(5.5)

d(L) ≤
∏

|bi| ≤ 2n(n−1)/4d(L),(5.6)

|b1| ≤ 2(n−1)/4d(L)1/n.(5.7)

Proof. In equation 5.4, notice that b∗
i and b∗

i−1 are perpendicular, so we can apply the
Pythagorean theorem:

|b∗
i |2 + µ2

i,i−1|b∗
i−1|2 ≥

3

4
|b∗

i−1|2.

Plugging in equation 5.3 we get

|b∗
i |2 ≥

1

2
|b∗

i−1|2.

Inducting on i, we have

|b∗
j |2 ≤ 2i−j|b∗

i |2 for j ≤ i.(5.8)

Shifting our focus to equation 5.1, we can again use the fact that the b∗
i are orthogonal to

write, by the Pythagorean theorem,

|bi|2 = |b∗
i |2 +

n∑
j=1

µ2
ij|b∗

j |2.

Plugging in the bounds 5.3 and 5.8 to the RHS, we have

|bi|2 ≤ |b∗
i |2 +

n∑
j=1

1

4
2i−j|b∗

i |2.

which can be simplified using geometric series to

|bi|2 ≤ 2i−1|b∗
i |2.(5.9)

This is almost 5.5. We just need to incorporate equation 5.8:

|bj|2 ≤ 2j−1|b∗
j |2 ≤ 2i−1|b∗

i |2

so we have proven equation 5.5.

Using definition 4.5 and the fact that b∗
i is orthogonal, we have

d(L) = det
([
b∗
1 b∗

2 . . . b∗
n

])
=

n∏
i=1

b∗
i

Because a projection of a vector cannot be of greater magnitude than the original vector, we
can write |b∗

i | ≤ |bi|, and adding equation 5.9, we have

|b∗
i | ≤ |bi| ≤ 2i−1|b∗

i |2.

8 MANU ISAACS

Taking the product over i gives equation 5.6. Finally, setting j = 1 in 5.5 and taking the
product over i gives equation 5.7, so we are done. ■

Now, we will show that if we can find a reduced basis (by our definition), we’ve solved
SV Pγ for γ(n) = O(2n/2).

Theorem 5.9. Let a lattice L have a reduced basis {bi}. Then, for all nonzero x ∈ L,
|b1|2 ≤ 2n−1|x|2.

Remark 5.10. By taking the square root of this equation, we see why γ(n) = O(2n/2).

Proof. We can write

x =
∑

ribi =
∑

r∗ib
∗
i

for ri ∈ Z and r∗i ∈ R. Because x is nonzero, not all ri can be zero. Thus, we can let i be
the largest index such that ri ̸= 0, from which r∗i = ri, by definition 5.6 of Gram-Schmidt
orthogonalization. So for this value of i,

|x|2 ≥ r∗i |b∗
i |2 ≥ |b∗

i |2.
But by 5.5, we have |b1|2 ≤ 2i−1|b∗

i |2 ≤ 2i−1|b∗
i |2, so combining these two inequalities, we

are done. ■

So now we know that producing a reduced basis is enough to solve an exponential ap-
proximation of the SVP. But how does the algorithm itself work? At a high level, we start
with a reduced basis of dimension 2, and add elements inductively until we achieve a basis
of dimension n. Each time we add an element, we have to modify the basis to ensure that
it is reduced again. Figure 2 shows the pseudocode for this algorithm.

6. Lattice-Based Cryptography

Now that we know some difficult problems in Lattice-Based Cryptography and how to
solve them (admittedly, only with exponentially bad accuracy), let’s take a look at some
cryptosystems. Lattice based cryptosystems can be divided into two categories: provably
secure but inefficient and efficient but not provably secure [2]. Lets take a look at a cryp-
tosystem which falls into the first category.

6.1. A Provably Secure but Inefficient Cryptosystem - Ajtai and Dwork. In a
breakthrough paper by Ajtai and Dwork [5], a cryptosystem was developed which is prov-
ably at least as secure as SVP. That is, in order to break the cryptosystem, a hacker must
first solve the SVP. What follows is a high level outline of the cryptosystem, then we will
dig into some of the details.

Suppose that Bob wants to send a message to Alice. The following steps outline how this
would happen.

(1) Alice creates her private key, a collection of hyperplanes in n dimensional space along
with a lattice of a specific type.

(2) Alice publishes a public key, a method for how to encrypt 0’s and 1’s.
(3) Bob encrypts his messages bit by bit. If he wants to encrypt a 1 he picks a lattice

point randomly and uniformly from a large cube. If he wants to encrypt a 0 he picks
a lattice point close to one of the hyperplanes (in a way described by the public key).

POST-QUANTUM CRYPTOGRAPHY 9

Figure 2. Pseudocode for the LLL Algorithm

(4) Alice computes the distance from Bob’s point is to any hyperplane using her private
key and determines if it should be decrypted as a 0 or a 1.

There’s a lot to unpack here. Is this secure (i.e. can some eavesdropper Eve gain information
based on the public information)? Can Alice ever decrypt messages incorrectly?

Let’s tackle these questions one by one. The following theorem answers the question of
security:

Theorem 6.1. An eavesdropper Eve being able to decrypt messages implies her ability to
solve the SVP (in the worst case or in a random case, depending on the exact variant of the
cryptosystem.

Proof. See [5]. ■

This means that if one believes conjecture 4.12, then one believes this cryptosystem is
secure.

To answer the second question, it turns out that there is a small chance that a 1 is de-
crypted incorrectly as a 0, and this chance tends to 0 as n → ∞.

Some more specific questions come to mind - what kinds of lattices L can we use? What

10 MANU ISAACS

is a hyperplane? How does Bob know how to encrypt his messages without knowing the
hyperplanes? What exactly is “close”? For a much more detailed explanation answering all
of these questions, see [5].

6.2. An Efficient but not Secure Cryptosystem - GGH. While GGH is no longer a
practically secure cryptosystem, it is still worth looking at because of its simplicity.

GGH is an asymmetric key cryptosystem developed by Goldreich, Goldwasser, and Halevi.

• Public key: A “bad” basis B1 for a lattice L
• Private key: A “good” basis B2 for the same lattice L
• Encryption: Pick a vector v ∈ L and encode your message as some noise vector r.
Then, v+ r is the ciphertext

• Decryption: Solve the CVP for the vector v + r. This is easy if one has access to
the private key, which is a “good” basis, but hard if one only has access to the public
key. This gives v, from which we can compute the plaintext (v+ r)− v = r.

What exactly do we mean by good and bad? A good basis is a reduced basis, while a bad
basis is a random basis, which is hard to reduce (this is lattice reduction). The key is that
it’s easy to start with a reduced basis and generate some bad basis to create the keys.

6.3. Lattice-Based Hash Functions. Before moving on to an efficient Lattice-Based Cryp-
tosystem which is believed to be secure, let’s take a small detour and explore the world of
hash functions. A cryptographic hash function is a function f with the following properties:

• The probability of a particular n-bit output result f(x) (called the hash value) for a
random input x is 2−n

• Solving for x given y = f(x) (a pre-image) is computationally unfeasible, assuming
all input strings are equally likely. How long it takes to perform such an inversion is
called security strength.

• Finding some distinct x, y such that f(x) = f(y) (a collision) is also computationally
unfeasible. This is called collision resistance.

We can build a simple hash functions using lattices. For example, consider the following
hash function:

• Parameters: n,m,q,d
• Key: A ∈ Zn×m

q

• Hash Function: fA : {0, 1, . . . d− 1}m → Zn
q given fA(v) = Av

This has function has the advantage that finding collisions is provably as hard as solving
lattice problems in the worst case. However, this hash function is inefficient in practice. One
way around this problem is to use circulant matrices.

Definition 6.2. A circulant matrix A has columns which are circular shifts of each other.
Specifically, letting

T =

0T 1

I 0

 ,

we write A = T∗v =
[
v vT vT2 . . . vTn−1

]
.

Using a circulant matrix in the previous hash function allows us to reduce space from O(n2)
to O(n) because A is only defined by one vector. It also allows us to reduce the complexity of

POST-QUANTUM CRYPTOGRAPHY 11

Figure 3. A circulant matrix in color

the matrix-vector product significantly using FFT. However, the downside of using circulant
matrices is that we invalidate our proofs of security. Similarly to the cryptosystem, we see
the issue of balancing efficiency and security.

6.4. An Efficient but not Provably Secure Cryptosytem - NRTU. NTRU is a
Lattice-based cryptosystem proposed by Hoffstein, Pipher and Silverman. Originally, the
cryptosystem was proposed using the language of rings, but we will describe it using lattices
generated by circulant matrices and lattices. Because of its use of circulant matrices, it is
efficient. However, it isn’t (yet) provably secure. This is because using circulant matrices
introduces structure to the lattices, invalidating proofs of security.

• Parameters: Prime n, modulus q, and integer bound df , small integer p
• Private key: Vectors f ∈ e1 + {p, 0,−p}n and g ∈ {p, 0,−p}n, such that each of
f − e1 and g contains exactly df + 1 positive entries and df negative ones, and the
matrix [T ∗f] is invertible modulo q

• Public key: The vector h = [T ∗f]−1g mod q ∈ Zq
n

• Encryption: The message is encoded as a vector m ∈ {1, 0,−1}n, and uses as
randomness a vector r ∈ {1, 0,−1}n, each containing exactly df + 1 positive entries
and df negative ones. The encryption function outputs c = m+ [T ∗h]r mod q

12 MANU ISAACS

• Decryption: On input ciphertext c ∈ Zq
n, output (([T ∗ f]c) mod q) mod p, where

reduction modulo q and p produces vectors with coordinates in [− q
2
,+ q

2
] and [−p

2
, p
2
]

respectively

Notice the use of circulant matrices [T ∗f] and [T ∗h]. To see exactly why this cryptosystem
works, see the original paper [6].

7. Conclusion

We discussed Post-Quantum Cryptography (PQC) and why it’s an important field to
study. After introducing the basics of lattices, some lattice problems and algorithms to
solve them, we looked at a few lattice-based cryptosystems and hash functions. A common
theme throughout lattice-based cryptography (and indeed PQC in general) is that finding
an efficient AND provably secure post quantum cryptosystem is a very difficult problem.

References

[1] Daniel J. Bernstein. Introduction to post-quantum cryptography, pages 1–14. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[2] Daniele Micciancio and Oded Regev. Lattice-based Cryptography, pages 147–191. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009.

[3] Carl Pomerance and Paul Erdös. A tale of two sieves. 1998.
[4] Lenstra, H.W. jr., Lenstra, A.K., and L. Lovász. Factoring polynomials with rational coefficients. Math-

ematische Annalen, 261:515–534, 1982.
[5] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence.

In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’97, page
284–293, New York, NY, USA, 1997. Association for Computing Machinery.

[6] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryptosystem. In
Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

Email address: manu.isaacs@gmail.com

	1. Intro
	2. What Still Works?
	3. Challenges with PQC
	4. Lattices and Lattice Problems
	4.1. Lattice Basics
	4.2. Hard Lattice Problems

	5. The LLL Lattice Reduction Algorithm
	5.1. Linear Algebra Preliminaries
	5.2. Gram–Schmidt Orthogonalization
	5.3. The Algorithm

	6. Lattice-Based Cryptography
	6.1. A Provably Secure but Inefficient Cryptosystem - Ajtai and Dwork
	6.2. An Efficient but not Secure Cryptosystem - GGH
	6.3. Lattice-Based Hash Functions
	6.4. An Efficient but not Provably Secure Cryptosytem - NRTU

	7. Conclusion
	References

