
Lattice-Based Cryptography
& The Shortest Vector Problem

Julian Schennach

August 18, 2024

1 Introduction

Many modern cryptosystems, such as ElGammal or RSA encryption, are based on compu-
tationally difficult number-theoretic problems, such as factoring or the discrete logarithm
problem. However, with the development of quantum computers, some quantum algorithms
have been found that solve these problems far more quickly — factoring, for instance, can be
done in polynomial time. Hence, new cryptosystems that are not easily breakable with quan-
tum computers are needed, and fortunately in the past 30 years, researchers have constructed
cryptosystems based on lattices.

Definition 1. An n-dimensional lattice is defined to be Λ = {a1b1+a2b2+ · · ·+anbn : ai ∈
Z}, where the bi’s are linearly independent vectors in Rn. We refer to the set {b1,b2, · · · ,bn}
as the basis of Λ. Each element of the lattice is known as a lattice point.

Some of the most common problems used in lattice-based cryptography exploit the diffi-
culty of searching for vectors with their Euclidean norm (i.e. length) minimized. Three such
problems are the following:

Problem 1 (Shortest Vector Problem (SVP)). Given a basis for a lattice, find the shortest
vector from one lattice point to another.

Problem 2 (Shortest Independent Vector Problem (SIVP)). Given a basis for a lattice, find
another basis such that the length of the longest basis vector is minimized.

Problem 3 (Closest Vector Problem (CVP)). Given a basis for a lattice, and a point in Rn,
find the closest lattice point to that point.

As of yet, there is no known method for solving these problems in general. Unfortunately,
there is a fairly efficient algorithm, the LLL algorithm, for finding a basis consisting of fairly
short, orthogonal vectors when already given a basis for the lattice, and such “reduced”
bases provide opportunities for solving lattice problems. This basis-reduction algorithm is
due to Lenstra, Lenstra, and Lovász in 1982, although it was originally applied to factoring
rational polynomials, an initially computationally difficult problem. We will be discussing

1

and providing motivation for the steps of the algorithm, and will also present a brute-force
method for solving the SVP with the LLL algorithm.

Interestingly, even with the LLL algorithm being one of the best modern attacks on the
SVP, Ajtai was able to show in 1998 that the problem was NP-hard. In this paper we will
define “NP-hardness” and explain the importance of this result. Furthermore, an application
of the SVP in public key cryptosystems were developed by him and Dwork in 1997, relying
on the worst possible cases of the SVP, and we will be explaining how this system works and
how messages can be encrypted and decrypted (although the explicit proof that the system
is secure is beyond the scope of this paper).

2 Examples of Lattice Problems

The most fundamental definition is the one for lattices :

Definition 1. An n-dimensional lattice is defined to be Λ = {a1b1+a2b2+ · · ·+anbn : ai ∈
Z}, where the bi’s are linearly independent vectors in Rn. We refer to the set {b1,b2, · · · ,bn}
as the basis of Λ. Each element of the lattice can be known as a lattice point.

Alternatively, we can embed a d-dimensional lattice in Rn by having a basis with only d
vectors. Given this definition, there are 3 very common and general lattice problems we can
state, the most fundamental one being the SVP.

Problem 1 (Shortest Vector Problem (SVP)). Given a basis for a lattice, find the shortest
vector from one lattice point to another.

Problem 2 (Shortest Independent Vector Problem (SIVP)). Given a basis for a lattice, find
n linearly independent vectors such that their maximum length is less than or equal to the
length of the longest vector in a basis such that said longest vector is as short as possible.

There also exists a seemingly more difficult generalization of the SVP that focus on
finding certain lattice points rather than vectors:

Problem 3 (Closest Vector Problem (CVP)). Given a basis for a lattice, and a point p in
Rn, find the closest lattice point to p.

If one can solve the CVP in n dimensions, the SVP in n dimensions can be solved as
well, as we can select the origin as the point in Rn. Then, the CVP (if formulated so that it
doesn’t give the trivial solution of the origin, which is 0 units away from itself) outputs the
lattice point that is closest to the origin, which is precisely the query of the SVP.

It turns out that if one can solve the SIVP in n dimensions, one can also solve the CVP
in n dimensions, and vice-versa, through a polynomial-time algorithm. If the reader wishes
to see a proof of this equivalence, they can consult Micciancio’s paper [4]. Hence, if we solve
the CVP or SIVP in n dimensions, then we can solve the SVP in n dimensions too. Note
that it is an open problem whether the SVP in n dimensions is equivalent to the SIVP (or
the CVP) in n dimensions. However, if the SVP in n+1 dimensions can be solved, then the
CVP and SIVP in n dimensions can be solved too.

2

Oftentimes, it is also sufficiently difficult to solve approximate versions of these problems.
Then, for a certain parameter we want to minimize in a problem, the approximate version
asks us to find a solution such that the parameter is less than or equal to γ ≥ 1 times the
minimal value of the parameter. This parameter is the length of a vector in the SVP and
CVP, and the maximum length of a set of vectors in the SVP. While these versions of the SVP,
SIVP, and CVP may of course seem less secure, there is currently no known polynomial-time
algorithm for solving any of these exact or approximate lattice problems in general. There
are polynomial-time algorithms when n = 2, 3, though, but for higher dimensions, these
lattice problems are very difficult to solve. However, there are some known approaches to
solving these problems, including the LLL algorithm.

3 The LLL Algorithm

The Lenstra-Lenstra-Lovász Algorithm, developed by its namesakes Arjen Lenstra, Hendrik
Lenstra, and László Lovász in a paper 1982, is one method to approach the SIVP, and can
often even solve the approximate version of the SIVP. The algorithm was actually originally
applied to factoring polynomials with rational coefficients, as was the intended application
in the paper presenting the LLL algorithm, but currently many people are interested in its
potential for solving the SVP. (Interestingly, during talks on the LLL algorithm in Caen,
a colleague of the authors, Peter van Emde Boas, asked whether people thought that the
polynomial factoring or the basis reduction applications were more notable. Those asked all
responded basis reduction.)

We now define the LLL algorithm rigorously, following the treatment in the book [5].
Generally, a reduced basis is a basis that has rather short and almost orthogonal vectors,
and the LLL algorithm defines a particular kind of reduced basis.

Algorithm 1. (The LLL Algorithm)
Given a basis {b1,b2, · · · ,bd}, calculate the orthogonalized basis {b1*,b2*, · · · ,bd*}

using the Gram-Schmidt method. Let µi,j =
bi•bj*

bj*•bj*
for 1 ≤ j < i ≤ d (where bi* = bi −∑j=i−1

j=1 µi,jbj* — the µi,j are the ”Gram-Schmidt coefficients”). Verify whether the original
basis is LLL-reduced, meaning that the orthogonal basis satisfies the following conditions:

• The basis is size-reduced, meaning that |µi,j| ≤ 1
2
for each 1 ≤ j < i ≤ d. If the

orthogonal basis is not size-reduced for a certain µi,j, then redefine bi as bi − [µi,j]bj

in the original basis, where [x] is x rounded to the closest integer. Then recompute the
orthogonal basis.

• The basis satisfies the Lovász condition: For some parameter δ in [1
4
, 1], we have

δ∥bi*∥2 ≤ ∥bi+1* + µi+1,ibi*∥2 = ∥bi+1*∥2 + ∥µi+1,ibi*∥2 for all 1 ≤ i < d — these
two forms are equivalent, because the bi*’s are orthogonal. (We can also rewrite the
condition as (δ−µ2

i+1,i)∥bi*∥2 ≤ ∥bi+1*∥2.) If the orthogonal basis does not satisfy the
Lovász condition for a certain i, then swap bi and bi+1 in the original basis. Again,
recompute the orthogonal basis.

If the recomputed orthogonal basis satisfies all conditions, the modified original basis is
LLL-reduced. Otherwise, repeat the modifications noted above.

3

In practice, one should only recompute the orthogonal basis after checking the conditions
for all valid i, j.

The conditions for an LLL-reduced basis might be somewhat unintuitive, so we motivate
them using a two dimensional example. First, as the name suggests, the size-reduced condi-
tion wishes to minimize the length of Suppose we want to size-reduce the basis {

(
2
−1

)
,
(−1

2

)
}.

The orthogonal basis is {
(

2
−1

)
,
(3

5
6
5

)
}, and µ2,1 = −4

5
. µ2,1 is not within the interval [−1

2
, 1
2
]

— what does this imply? Well, that implies that the projection of
(−1

2

)
onto

(
2
−1

)
is longer

than half the length of
(

2
−1

)
, as can be seen in this picture:

The second basis vector
(−1

2

)
is not as short as it could be — if we remove some integer

scalar multiple (for size-reduction, [−4
5
] = −1) of

(
2
−1

)
until the projection of the resulting

vector onto
(

2
−1

)
becomes less than half as long as

(
2
−1

)
, then we will obtain a shorter vector

(in this case,
(−1

2

)
− (−1)

(
2
−1

)
=
(
1
1

)
) that serves the exact same purpose as our original one:

Notice that the projection onto
(3

5
6
5

)
(the vector orthogonal to

(
2
−1

)
) remains the same,

and the projection onto
(

2
−1

)
is shortened, resulting in the full length of our vector being

4

shortened too. Importantly, size-reduction uses the interval [−1
2
, 1
2
] because we can only

remove integer scalar multiples of
(

2
−1

)
from

(−1
2

)
, so the projection onto

(
2
−1

)
can only be

within half the length of
(

2
−1

)
from 0 (so the ”error” from 0 is [−1

2
, 1
2
], an interval of length

1 centered at 0).
Next, the Lovász condition aims to make the LLL-reduced basis vectors almost orthogonal

— specifically, by modifying the original basis according to that condition (so swapping any
necessary pairs of vectors) and then size-reducing the basis, we should obtain a shorter and
more orthogonal basis. δ is the measure for how reduced this basis is — the closer δ is to 1,
the more the basis is LLL-reduced.

Note that the LLL algorithm keeps the lattice generated by the reduced basis the same as
the original lattice. When size-reducing, each modified vector is an integer linear combination
of the original basis vectors, so the lattice (also an integer linear combination of the basis
vectors) remains the same. And changing the order of the basis evidently does not change
the lattice.

How efficient is the LLL algorithm? If w define B to be the length of the longest vector
in our original basis, the time complexity when δ ̸= 1 turns out to be O(d5n log3B) for that
maximum length B. In order to maximize the time required for approximately solving the
SVP, it is clear that one should use a lattice with an n-dimensional basis. Then d = n and
the LLL algorithm runs in O(n6 log3B) time. We could also try to find original bases that
are very large, so that log3B is very large as well. Importantly δ = 1, which would result
in the ”most” LLL-reduced basis, is excluded, and indeed we do not know whether the LLL
algorithm runs in polynomial time for that value of δ. The paper introducing the algorithm
used δ = 3

4
, and that is the standard value for δ.

Importantly, even though the LLL algorithm runs in polynomial time with respect to d,
n, and B, it does not precisely solve the SVP, but can solve the approximate SVP. (This is
because the shortest vector in an LLL-reduced basis is at most the length of the shortest
vector times a certain constant c.) Of course, we may be extremely lucky after using LLL
and find the shortest vector in our basis, but we do need to verify that one of the basis
vectors is the solution to the SVP in our basis. And usually, we will not have found a
shortest vector yet, nor a sufficiently short one. (And usually the reduced basis is not yet
an optimal solution to SIVP either.) A simple algorithm for finding the shortest vector after
LLL-reducing the known basis is by brute-force search.

Let x be the desired shortest vector, and express it as
∑d

i=1 xibi, where {b1,b2, · · · ,bd}
is an LLL-reduced basis (reordered from shortest to longest vectors). The xi are integers.
Clearly, ∥x∥ ≤ B′, where B′ is ∥b1∥ (x is either b1 itself, or some shorter vector). We rewrite
x as a linear combination of {b1*,b2*, · · · ,bd*}:

x =
d∑

i=1

xi

(
bi* +

i−1∑
j=1

µi,jbj*

)
=

d∑
i=1

(
xi +

d∑
j=i+1

µj,ixj

)
bi*.

Now we compute the projection of x onto the subspace with basis {bk*,bk+1*, · · · ,bd*+},
which is:

d∑
i=k

(
xi +

d∑
j=i+1

µj,ixj

)
bi*.

5

A rather loose upper bound on the magnitude of this projection is B′ itself. Hence:∥∥∥∥∥
d∑

i=k

(
xi +

d∑
j=i+1

µj,ixj

)
bi*

∥∥∥∥∥
2

=
d∑

i=k

∣∣∣∣∣xi +
d∑

j=i+1

µj,ixj

∣∣∣∣∣
2

∥bi*∥2 ≤ ∥B′∥2.

If we were to know the values for xk+1, xk+2, · · · , xd, then we obtain a linear inequality with
the only unknown variable being xk, so we can easily check through brute-force all possibil-
ities for xk (remember, the xi are integers, so we only have a finite number of possibilities).
Explicitly, the inequality is:

∣∣∣∣∣xk +
d∑

j=k+1

µi,kxi

∣∣∣∣∣ ≤
√

B′2 −
∑d

i=k+1

∣∣∣xi +
∑d

j=i+1 µj,ixj

∣∣∣2 ∥bi*∥2

∥bk*∥
.

The solutions for xk is simply a bounded, closed interval. Using this method, we are able to
find every xi by brute force: In the inequality above, first let k = d and find all possibilities
for xd. Then, in each possibility, use the inequalities with k = d − 1 and then find the
possible values for xd−1. In each case, find the possibilities for xd−2, and continue.

Clearly, this algorithm is very inefficient — it is a brute-force algorithm after all. Indeed,
the time complexity for this method after the LLL-algorithm has been used is 2O(d2) (in
addition to some negligible polynomial terms). If we were to use a stricter (but by itself
less efficient) basis-reduction algorithm, as Ravidran Kannan used in 1983, then the time
complexity becomes 2O(d log d). In 2001, Miklós Ajtai found a sieving algorithm for solving
the SVP in 2O(d) time complexity. This is still not polynomial time, so at this point the LLL
or other basis-reduction algorithms have not yet completely solved the SVP. Perhaps there
may be an explanation: Unlike the discrete logarithm or factoring problems, which are only
“NP,” the SVP can be shown to be “NP-hard.”

4 NP-Hardness Of The SVP

In computer science, there are many different problem classifications. These include NP,
NP-hard, and NP-complete. The most important of these classifications for our purposes is
the notion of NP-hardness.

Definition 2. (NP-Hardness)
A problem H is NP-hard if for any NP problem G, there exists a polynomial-time algo-

rithm that reduces G to H — in other words, there exists a polynomial-time algorithm for
solving all NP problems when knowing the solution for H from an oracle.

Theorem 1. The Short Vector Problem is NP-hard under “randomized reductions” — i.e.
the algorithms that reduce NP problems to the SVP are probabilistic and not deterministic
(so each time we run the reduction algorithm for a particular NP problem, we obtain an
SVP with different parameters, such as a different lattice basis).

6

To prove this theorem in his 1998 paper [1], Miklós Ajtai proves that the restricted subset
sum problem, an NP-complete problem, can be reduced to the SVP. The specific definition
of NP-completeness is not essential here. The key is that any NP problem can be reduced to
an NP-complete problem, implying that if we can prove that an NP-complete problem (like
the restricted SSP) reduces to the SVP, then we prove that all NP problems reduce to the
SVP too, meaning that SVP is NP-hard. The restricted subset problem queries whether a
subset of a certain set of (not necessarily distinct) integers can sum to a chosen target. The
proof of the NP-hardness of the SVP is quite complicated, requiring many other lemmas
regarding both the restricted subset sum problem and “hypergraphs,” so if the reader wishes
to see the proof, they can consult Ajtai’s full paper.

As an example of an NP problem that can be solved with the SVP, we consider the
factoring problem.

Theorem 2. If we have an oracle for solving the SVP (for any dimension), we can solve the
factoring problem within polynomial time.

We present the rough framework for this proof — again, to ensure that we can actually
follow these steps, we need to prove many foundational results. Let the positive integer we
want to factor be N . Let p1, p2, · · · , pk be the first k primes, all bounded by (logN)a for
some real a. Then construct the following lattice (where each column is a basis vector for
the lattice) for some real b:

√
log p1 0 · · · 0
0

√
log p2 · · · 0

...
...

. . .
...

0 0 · · ·
√
log pk

N b log p1 N b log p2 · · · N b log pk

 .

We want to find the vector in this lattice closest to (0, 0, · · · , N b logN) (findable if the CVP
can be solved, which is solvable if the SVP is). Suppose that the scalars for each basis vec-
tor are x1, x2, · · · , xk. Then the shortest vector is (x1

√
log p1, x2

√
log p2, · · · , N b(x1 log p1 +

x2 log p2 + · · · + xn log pn)). We are most interested in the final component, which can
be rewritten as N b log(px1

1 px2
2 · · · pxn

n). This component must be very close to N b logN , so

N b log(px1
1 px2

2 · · · pxn
n) − N b logN = N b(log(

p
x1
1 p

x2
2 ···pxnn
N

) is very close to 0. We simplify and

exponentiate to find that
p
x1
1 p

x2
2 ···pxnn
N

is close to eN
b0 = 1. Hence, for certain x1, x2, ·, xn,

px1
1 px2

2 · · · pxn
n is close to N . So there exists a (logN)a-smooth number fairly close to N .

Repeating this argument for other a’s (and therefore other smallest primes p1, p2, · · · , pk),
we find multiple “supersmooth” numbers very close toN . Of course, these results seem useful
for factoring N , but the fastest algorithm that uses supersmooth numbers (the number
field sieve) does not run in polynomial time. Instead, we must prove other results on the
supersmooth numbers generated by this process, which eventually guarantees us a polynomial
time reduction from the factoring problem to the SVP. For a rigorous proof, see Claus-Peter
Schnorr’s paper [6]. He even reduces the discrete logarithm problem to the SVP!

7

5 Lattice-Based Cryptosystem

Since the SVP (and therefore the CVP and SIVP) are NP-hard, we would expect the problem
to be a good foundation for cryptosystems. Indeed, there are a multitude of different lattice-
based cryptosystems, like NTRUEncrypt or GGH, and also many designed for key exchanges
or sign-and-encrypt protocols. We present here one of the first such cryptosystems, one of
three published by the same Ajtai with Cynthia Dwork in a 1997 paper [2].

Select a sufficiently large dimension n in which this cryptosystem will be constructed.
Given positive M,d, we define an n-dimensional “(d,M)-lattice” L, by which we mean
a lattice L satisfying the following conditions: First, there exists an (n − 1)-dimensional
sublattice L′ ⊂ L that has a basis {b1,b2, · · · ,bn−1} such that ∥bi∥ ≤ M . Second, if H
is the (n − 1)-dimensional subspace of Rn that contains all points in L′ (in other words,
H is the vector space — not lattice — generated by the same basis as L′), then for the
unit vector h orthogonal to all vectors in H, the minimal nonzero distance dL for which
{u + dLh | u ∈ H} ∩ L ̸= ∅ must be at least d. Let L be the set of all (d,M)-lattices
for certain M and d > ncM where c > 5. Note that d can be any positive number, but
d > M guarantees that there is only one (d,M)-lattice for L, and d > ncM allows us to use
the hidden hyperplane assumption: If an attacker knows the basis for a randomly selected
(d,M)-lattice L ∈ L, and even the values of M and d, it is computationally difficult for him
or her to find the corresponding (n − 1)-dimensional sublattice L′ (which can be called a
“hyperplane,” the namesake of our assumption).

We now define our cryptosystem that builds upon this hidden hyperplane assumption.
First, select some M , which we make public. We randomly generate the corresponding
sublattice L′ ⊂ L to some currently undefined L, with the L′ basis {b1,b2, · · · ,bn−1} being
our private key. Again, we need ∥bi∥ ≤ M . Let H be the (n − 1)-dimensional subspace of
Rn that contains all points in L′ again. Next, select a positive d > ncM where c > 5 —
and d is also public. Then, select a private number dL between d and 2d, inclusive. With
h being the unit vector orthogonal to the vectors in H again, we define an n-dimensional
lattice L generated by the basis of L′ and the vector dLh. This L is now an (d,M)-lattice by
construction. We now construct a random basis for L and let it be, in conjunction with M ,
our public key. An attacker cannot derive L′ by only knowing the basis for L and the value
of M , so we can safely use L′ to encrypt messages. Here, the hidden hyperplane assumption
corresponds to the approximate SIVP, as our basis vectors must either be bounded by M
(for the bi’s) or 2d (for dLh). If we could solve the approximate SIVP, we could exhaust all
possibilities for the basis of L′ and eventually break the cryptosystem.

Now we define a simple encryption method if we want to send binary strings. We first
define a positive real number R = n3M and a positive integer m ≥ 4n. We use x+

∑m
i=1 vi

if we want to encrypt 0, where x is a lattice vector with each component within [0, K] and
the vi’s are random vectors such that ∥vi∥ ≤ R (imagine a random walk starting at x with
m steps of length at most R). Here, K must be quite large and also greater than 2 n

√
d, and

this lower bound, through Minkowski’s Theorem in n dimensions, guarantees that a lattice
vector x satisfying the desired conditions exists. If we want to encrypt 1, select a random
vector x (not necessarily in the lattice) with each component within [0, K].

Decryption is now very simple: Since the decrypter knows the basis of L′ (and therefore
the unit vector h orthogonal to the subspace H from before) and also the value of dL, he or

8

she can compute h•v
dL

, where v is the encrypted vector that was sent. If the result is within
mR
dL

of an integer, then a 0 is decrypted. Otherwise, a 1 was certainly encrypted.
Why does this decryption method work? The expression h • v measures the length of

the projection of v onto h. The projection of any lattice vector in L onto h must have a
length that is a multiple of dL, by the construction of L (the basis vector dLh is orthogonal
to all other basis vectors). And if 0 was encrypted, the projection can only be increased by
at most mR if we happened to only move in the direction of h for each random step. Thus,
the projection h • v must be within mR of a multiple of dL, or in other words, h•v

dL
is within

mR
dL

of an integer. In short, we want to verify whether the sent vector is close to a lattice
point (which is similar to the approximate CVP). Projecting onto a random vector other
than h will tend to result in the projected lattice points being too close together, making
the protocol above less effective.

Do note that a vector that is supposed to represent a 1 might actually be decrypted
as a 0 (for instance, if the encryption vector is sufficiently close to a lattice point). For
the sufficiently large K selected before, the probability of such errors should be quite low.
Nevertheless, the encrypter can use some coding theory (such as repeating a message multiple
times, where most of the copies of the message would probably have no errors) in order to
prevent loss of information for our decrypter.

Cryptosystems based on lattice problems are particularly unique in the grand scope of
cryptography because of the argument used to show that they are secure. In most systems,
including Diffie-Hellman or RSA, we might not be able to simply select random public
and private keys because an “average-case” instance of the discrete logarithm or factoring
problems might be vulnerable to a certain attack. Indeed, attacks like Pohlig-Hellman (for
the discrete logarithm problem) or the quadratic sieve (for factoring) work best when certain
conditions — such as whether a prime factor of a key is close to smooth numbers — happen
to be satisfied.

However, lattice-based cryptosystems (especially those that exploit the SVP) are not as
vulnerable to attacks on “average-case” examples of a lattice problem. In order for an attack
to solve the SVP in an average case, it must also be able to solve the SVP in a worst-case
scenario, where, for instance, the basis used is particularly difficult to work with. Ajtai and
Dwork prove in the same paper that there exists a worst-case average-case equivalence for
the SVP: The time complexity for solving an average-case instance of the SVP is equal to the
time complexity for solving a worst-case SVP. So, people using a lattice-based cryptosystem
must be less selective about what public or private keys they choose — the underlying
example of the SVP will still be difficult to solve (although, of course, stupid instances of
the SVP should be avoided at all costs!). The authors use this result to prove that their
cryptosystems are secure.

6 Conclusion

Currently, lattice-based cryptosystems seems to be the future of quantum-secure cryptogra-
phy — for many lattice problems, including the SVP, there are no known polynomial-time
algorithms that can solve them. Even the most efficient attacks, like the LLL algorithm,
only have exponential time-complexity, and the SVP is even an NP-hard problem. Yet, the

9

permanence of lattices in cryptography is all but certain. Indeed, there was some anxiety
when in 2024, Yilei Chen published a paper [3] that claimed to have cracked a form of
the SVP in polynomial time on a quantum computer. Fortunately, an issue in one of the
steps for the algorithm made the result (as of yet) false, but since lattice-based cryptogra-
phy and quantum computing are still relatively recent, there may still be some vulnerability
in SVP and other currently difficult lattice problems. Perhaps they might be proven even
quantum-secure eventually, or valid attacks may be discovered, but only time will tell.

References

[1] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.
Electronic Colloquium on Computational Complexity, 1997.

[2] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. STOC: Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, 1997.

[3] Yilei Chen. Quantum algorithms for lattice problems. Technical Report 555, Cryptog-
raphy ePrint Archive, 2024.

[4] Daniele Micciancio. Efficient reductions among lattice problems. Proceedings of SODA,
pages 84–93, 2008.

[5] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm. Springer, New York,
New York, 2010.

[6] Claus-Peter Schnorr. Factoring integers and computing discrete logarithms via diophan-
tine approximation. DIMACS Series In Discrete Mathematics and Theoretical Computer
Science, 13, 1993.

10

