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1 Introduction

As one of the biggest classical problems in number theory, the congruent num-
ber problem has fascinated mathematicians for centuries. This problem has
been popularly phrased as how a given positive integer n can be the area of a
right-angled triangle with rational side lengths, a question that intertwines the
geometry of triangles with the arithmetic of numbers. A positive integer n is
called a congruent number if there exists a right-angled triangle with rational
sides whose area is exactly n.

In this paper, we will begin by exploring the concept of congruent numbers
and the associated Congruent Number Problem. We will introduce the basic
definitions and provide examples to illustrate the significance of this problem in
number theory. Following this, we will delve into the role of elliptic curves in
solving congruent number problems, explaining why they are central to this field
of study. We will outline the fundamental aspects of elliptic curves, including
their definitions, properties, and the concept of point addition.

Next, we will discuss the correspondence between elliptic curves and congruent
numbers, focusing on how elliptic curves can be used to address the Congruent
Number Problem. Key theorems such as the Nagell-Lutz Theorem and the
Mordell-Weil Theorem will be examined to provide a deeper understanding of
the structure of elliptic curves over the rationals and their torsion points. By
analyzing these theorems, we will gain insights into the specific examples of
congruent numbers and demonstrate how these mathematical tools contribute
to solving the problem.

2 Congruent Numbers

A congruent number is a positive integer that can be the area of a right-angled
triangle with all three sides having rational lengths. In other words, n is con-
gruent if there exist rational numbers a, b, and c such that a2 + b2 = c2 and the
area of the triangle is 1

2ab = n.
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2.1 Congruent Number Problem

Given a whole number N , does there exist a right-angled triangle with rational
side lengths and an area of N?

2.1.1 Example

Identifying whether a number is congruent by searching for the side lengths of
right-angled triangles is a complex task. As an example, take the congruent
number N = 157. It can be the area of a right triangle with the following
rational side lengths:

α =
411340519227716149383203

21666555693714761309610

β =
6803298487826435051217540

411340519227716149383203

This is the “simplest” known triangle corresponding to the congruent number
157.

2.1.2 Simplification

Suppose N represents the area of a rational right-angled triangle with sides α,
β, and hypotenuse γ, where α, β, γ ∈ Q and satisfy α2+β2 = γ2 with N = 1

2αβ.
When N is multiplied by 4, the following equations hold:

(α+ β)2 = γ2 − 4N

(α− β)2 = γ2 + 4N

By multiplying the equations together, we get:

2



(
α2 − β2

4

)2

= γ2 − 4N

Define v = α2−β2

4 and u = γ2. This gives us:

v2 = u−N2

Next, multiply both sides by u2:

(uv)2 = u3 −N2u2

Set x = u2 = (γ2)2 and y = uv = γ(α2−β2)
8 . This results in:

y2 = x3 −N2x

which represents the equation of an elliptic curve.

2.1.3 Why elliptic curves?

By transforming the problem into an elliptic curve equation, the Congruent
Number Problem is recast into a question about the rational points on the
elliptic curve EN . Specifically, N is a congruent number if and only if the
elliptic curve EN has a rational point (x, y) with y ̸= 0. This connection allows
us to use the tools and theorems from the theory of elliptic curves, such as the
Mordell-Weil theorem, descent methods, and modern computational techniques,
to approach and potentially solve the problem.

2.2 Elliptic Curve Correspondence

According to https://kconrad.math.uconn.edu/articles/congruentnumber.pdf, there
is a one to one correspondence between an elliptic curve and the sides of a right
triangle α, β, γ. Specifically for n > 0, there is a one-to-one correspondence
between the following two sets:

{(a, b, c) | a2 + b2 = c2,
1

2
ab = n}

and
{(x, y) | y2 = x3 − n2x, y ̸= 0}.

Mutually inverse correspondences between these sets are:

(a, b, c) 7→
(

nb

c− a
,

2n

2c− a

)
,
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(x, y) 7→
(
x2 − n2y

y
,
2nx

y
,
x2 + n2y

y

)
.

. We can use this information to find these side lengths when we find a corre-
sponding point on the elliptic curve.

3 Elliptic Curves

Now that we have converted the problem into an elliptic curve, let us rephrase
the problem into a new one.

For a whole number N , does there exist a rational point (x, y) with y ̸= 0 on
the elliptic curve EN : y2 = x3 −N2x?

3.1 Intro to Elliptic Curves

An elliptic curve is a type of cubic curve defined by a specific kind of equation
in two variables, typically denoted x and y, with the form:

y2 = x3 + ax+ b

where a and b are constants, and the curve is defined over a particular field,
such as the real numbers R or the rational numbers Q.

Elliptic curves have a rich structure and are of profound interest in number
theory, algebraic geometry, and cryptography. One of the most striking features
of elliptic curves is that the set of points on an elliptic curve, together with a
special point called the ”point at infinity,” forms a group under a particular
addition operation. This group structure is key to many of the deep results in
number theory related to elliptic curves.

3.2 (E(Q),+) is an Abelian group

Commutativity
For any two points P1 and P2 on E(Q), we have:

P1 + P2 = P2 + P1.

This follows from the fact that the line through P1 and P2 intersects the curve
at the same third point, regardless of the order of P1 and P2.

Closure
The set E(Q) is closed under the addition operation +. For any points P1 and
P2 in E(Q), their sum P1 + P2 is also in E(Q).

Identity Element
The identity element with respect to the addition operation + is the point at
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infinity, denoted O. For any points P1 and P2 on the elliptic curve E(Q), we
have:

P1 + P2 = O ⋆ (P1 ⋆ P2).

Thus, for any point P on the elliptic curve:

O + P = O ⋆ (O ⋆ P ) = P,

since if P = (x, y), then O⋆P = −P = (x,−y), and hence O⋆(O⋆P ) = (x, y) =
P . Therefore, the point at infinity serves as the identity element.

Inverse Element
For every point P on the elliptic curve, there exists an inverse point −P such
that:

P + (−P ) = O.

Define the inverse of P as:

−P := P ⋆ (O ⋆ O).

Then:

P + (−P ) = O ⋆ (P ⋆ (−P )) = O ⋆ (P ⋆ (P ⋆ (O ⋆ O))) = O.

This indicates that there is no third point on E where the line through P and
−P intersects the curve.

Associativity
For any points P1, P2, and P3 on the curve, the addition operation satis-
fies:

(P1 + P2) + P3 = P1 + (P2 + P3).

This property has a complex proof that is outside the scope of the paper.

3.3 Point Addition in Elliptic Curves

The equation of the elliptic curve EN indicates that any line intersecting the
curve will intersect it at a third point. We can define an addition operation for
points on an elliptic curve by using this third point as the sum of the initial
two points. Although this operation is not associative on its own, reflecting the
third point over the x-axis provides a well-defined addition operation for elliptic
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curves. This geometric approach also has an algebraic foundation. An elliptic
curve includes a point at infinity, which is considered a rational point.

The set of rational points on the elliptic curve, denoted E(Q), forms an Abelian
group, with the point at infinity O serving as the identity element. For two
distinct points P1 and P2 on the curve, the line through P1 and P2 intersects
the curve at a third point, denoted P1 ⋆ P2.

We then draw the vertical line through P1 ⋆ P2 and intersect it with the curve
again to find the reflection of P1 ⋆ P2 across the x-axis. We define the binary
operation ⋆ such that P1 ⋆ P2 is this reflection. The addition of points on the
elliptic curve is then given by:

P1 + P2 = O ⋆ (P1 ⋆ P2)

If the points are the same, we use the tangent line to define this addition. Since
P1 + P1 = 2P1 := P , we draw the tangent line to P and then find the third
point of intersection with the curve and reflect it about the x-axis.

3.4 Torsion Points

In the context of elliptic curves, a torsion point is a point on the curve that,
when added to itself a certain number of times, results in the identity element,
which is the point at infinity O. More formally, a point P on an elliptic curve
E is called a torsion point if there exists a positive integer n such that:

nP = O.

The smallest such n is referred to as the order of the torsion point P . Torsion
points play a crucial role in the study of elliptic curves and are central to many
aspects of their theory.

3.4.1 Example of Torsion Points

Consider the elliptic curve E given by the equation:

y2 = x3 − x

defined over Q. To find the torsion points, we look for points (x, y) such
that:

n(x, y) = (O)

for some integer n. For this specific curve, it can be shown that the torsion points
include the point at infinity and other points of finite order. For instance, the
point (0, 0) is a torsion point of order 2, as:
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2(0, 0) = O

Similarly, other torsion points can be computed, giving insight into the structure
of the torsion subgroup of E.

3.4.2 Example Theorem

Suppose that P is a 2-torsion point on an elliptic curve E, and that P is not
the point at infinity. Show that the y-coordinate of P is 0.

The equation for an elliptic curve is given by y2 = x3+ax+ b. A point P on an
elliptic curve is a 2-torsion point if 2P = O. For clarification, an elliptic curve
forms an abelian group where the operation of addition for two distinct points
P and Q are done as the following:

• Find the line that intersects both P and Q.

• Find the third point where this line intersects the elliptic curve, R.

• Calculate the reflection of this point R, which we will call R′.

• Now we have P + Q = R′ as our operation definition, with the identity
element being the point at infinity.

Since we are only dealing with one point P , we must take the tangent line of the
elliptic curve. Doing some basic implicit differentiation, we find that the slope

of the line λ must be
3x2

1+a
2y1

, where the coordinates of P are (x1, y1). Since we
are doing the operation P+P , we have that the line is y = λx+b. We can find b
by plugging in x1 and y1. Now the updated line is y = λ(x−x1)+y1. Since the
line intersects the elliptic curve at a third point to complete the operation, we
can plug in the line equation into the elliptic curve equation: (λ(x−x1)+y1)

2 =
x3 + ax+ b. The following is the rest of my algebra for the problem.

(λ(x− x1) + y1)
2 = x3 + ax+ b

Moving everything to one side, we can get the following:

x3 − λ2(x− x1)
2 + o x+ o

We can set λ2 = x3+2x1, which makes x3 = λ2− 2x1. We can stop here before
we solve for y3. Since we know that x3 must equal to infinity in order to form
the group, we must find a way to make x3 to be infinite. Since the denominator
of λ is 2y1, y1 must equal to 0.

3.5 Nagell-Lutz Theorem

Let A,B ∈ Z be integers, and let ∆A,B denote the discriminant of the elliptic
curve given by the equation
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∆A,B = −16 · (4A3 + 27B2)

Assume that ∆A,B ̸= 0, which ensures that the elliptic curve is nonsingular
(i.e., it has no cusps or self-intersections). Consider the elliptic curve E over
the rational numbers Q given by the affine Weierstrass equation:

y2 = x3 +Ax+B

Let (x, y) be a point on E with rational coordinates x, y ∈ Q, and suppose
that this point has finite order under the group law on the elliptic curve. The
Nagell-Lutz theorem then states the following:

• Integer Coordinates: If (x, y) is a rational point of finite order, then
both x and y must actually be integers, i.e., x, y ∈ Z.

• Condition on y2: Furthermore, the value of y2 must either be zero or
must divide the discriminant ∆A,B precisely. That is, y2 must satisfy:

y2 | ∆A,B

This means that if y ̸= 0, then the square of y must be a divisor of the
discriminant ∆A,B . If y = 0, the point (x, 0) corresponds to a point of
finite order on the elliptic curve, specifically a point of order 2.

Proof. Let E be an elliptic curve defined over Z, and let P = (x0, y0) be a
rational point on E. Let’s show that if P is not an integral point, then P
must have infinite order. Suppose, for contradiction, that P has finite order n.
This would imply that nP = O, where O is the identity point on the elliptic
curve. If P had finite order, it would mean P is a torsion point of the elliptic
curve. However, torsion points on elliptic curves defined over Z are known
to be integral points. This follows because the coordinates of torsion points
satisfy polynomial equations with integer coefficients, which necessitates that
both coordinates must be integers. Since P is given to be a rational point
but not an integral point (meaning at least one of x0 or y0 is not an integer),
it contradicts the fact that a torsion point must be integral. Therefore, the
assumption that P has finite order leads to a contradiction. Hence, if P is a
rational point but not an integral point, P must have infinite order.

The Nagell-Lutz theorem is significant because it allows us to classify the torsion
points (points of finite order) on an elliptic curve in a very concrete way. By
checking which integer points satisfy these conditions, one can determine all the
torsion points on a given elliptic curve. This theorem is particularly useful in
computational aspects of elliptic curves, where identifying torsion points is a
key step in many algorithms.
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3.6 Mordell-Weil Theorem

(Mordell–Weil) Let E be an elliptic curve over Q. There is a nonnegative integer
r and a finite abelian group T such that

E(Q) ∼= Zr × T.

We call r the rank and T the torsion subgroup.

The Mordell-Weil Theorem provides important insights into the structure of
elliptic curves over the rational numbers Q. It tells us that the set of rational
points on an elliptic curve can be decomposed into two distinct parts. Specif-
ically, any point on the curve can be expressed as a combination of a finite
number of special points plus a finite repeating pattern. In simpler terms, this
means that every point on the curve can be written as a sum of certain “gen-
erator” points with integer coefficients and a finite set of torsion points, where
the coefficients of the torsion points are restricted to specific ranges.

To formalize this, the theorem identifies two key components: the rank r and
the torsion subgroup T . The rank r represents the number of independent
ways to combine these generator points, which essentially gives us an infinite
set of combinations. The torsion subgroup T describes a finite set of repeating
patterns in the curve’s points. This means that the set of rational points on
the curve is a blend of a freely combinable infinite part and a finite, periodic
part.

Mazur later extended this theorem by detailing the possible structures of these fi-
nite repeating patterns, further refining our understanding of the elliptic curve’s
rational points.

4 Congruent Problem Example

The right triangle with sides 3, 4, and 5 has area 6. Using elliptic curves, find
three more right triangles with rational sides and area 6.

We start by introducing the concept of a congruent number. An integer N is
defined as a Congruent Number if there exist rational numbers α, β, and γ such
that γ2 = α2 + β2 and N = 1

2αβ. Given that N is our target area, multiplying
N by 4 yields the relations (α + β)2 = γ2 − 4N and (α − β)2 = γ2 + 4N .

Dividing these equations by 4, we derive the identities
(

α+β
2

)2

=
(

γ2

2

)
−N and(

α−β
2

)2

=
(

γ2

2

)
+N .

By multiplying these equations, we obtain
(

α2−β2

4

)2

=
(

γ2

4

)2

+N2. Introducing

the substitutions v = α2−β2

4 and u = γ2

2 , we arrive at the equation v2 = u4−N2.
Further manipulation by multiplying by u2 leads to (uv)2 = u6−N2u2. Setting
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x = u2 =
(

γ2

2

)2

and y = uv = γ(α2−β2)
8 , the resulting equation is y2 = x3−N2x,

which describes an elliptic curve.

For N > 0, there is a one-to-one correspondence between the set of right tri-
angles with rational sides (α, β, γ) and area N , and the set of rational points
(x, y) on the elliptic curve y2 = x3 − N2x with y ̸= 0. The mutually inverse

correspondences between these sets are given by (α, β, γ) 7→
(

Nβ
γ−α ,

2N2

γ−α

)
and

(x, y) 7→
(

x2−N2

y , 2Nx
y , x2+N2

y

)
.

This elliptic curve formulation connects to the classic Congruent Number Prob-
lem (CNP) through the question: For a whole number N , does there exist a
rational point (x, y) with y ̸= 0 on the elliptic curve EN : y2 = x3 −N2x? No-
tice that given a right triangle with rational sides and area N , a corresponding
rational point (x, y) can be found on the curve EN .

Applying the Nagell–Lutz Theorem, consider an elliptic curve E in short Weier-
strass normal form E : y2 = x3 + Ax + B, with integral coefficients A,B ∈ Z.
Let O ̸= P = (x, y) ∈ E(Qtors). Then x, y ∈ Z, and either 2P = O or y2 divides
∆0 = −∆

16 = 4A3 + 27B2. Specifically, for the family of elliptic curves of the
form EN : y2 = x3−N2x, where ∆0 = 4N6, the torsion points of EN are either
y = 0 or y2 divides 4N6.

Finally, using computational tools such as Sage, these theoretical insights can
be applied to find explicit examples of right triangles with rational sides and
area 6.

The three right triangles with rational sides and area 6, found using the elliptic
curve method, have the following sets of sides: 120

7 , 7
10 ,

1201
70 ; 4653

851 , 3404
1551 ,

7776485
1319901 ;

and 1437599
168140 , 2017680

1437599 ,
2094350404801
241717895860 . I found these side lengths by plugging in the

rational points found in the elliptic curve into the mutually inverse correspon-
dence that we have calculated before.
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