
Algorithmically Breaking Substitution Ciphers

with Markov Chains

Jacob Kawako

August 2024

1 Introduction

The substitution cipher is one of the most basic and intuitive ciphers there
is, where each distinct character of the plaintext is swapped for a different
character. Most methods of breaking substitution ciphers involve analyzing fre-
quency of individual characters or possible occurences of common letter group-
ings. However, thanks to Markov chains, there exists an algorithm that can
automate the solving of substitution ciphers. This paper will introduce basic
facts of Markov chains and language models and apply them, along with the
Metropolis-Hastings algorithm to the automated solving of substitution ciphers.

2 Substitution Ciphers

It will help us down the line to define substitution ciphers rigorously.

Definition 1 (Substitution Ciphers). Let A and A′ be “alphabets” (sets of
characters) of the same size. Given a plaintext m composed of elements of A
and a bijective mapping f ∶ A→ A′, Elements of m are swapped with their image
under f to form the ciphertext.

If A = A′ and both represent the English language, then f(m) simply per-
mutates the distinct letters.

Techniques of breaking substitution ciphers tend to rely on the simple fact
that the plaintext should make sense and resemble a language that exists. These
attacks’ reliance on linguistic patterns suggest the use of a language model.

2.1 Language Models

Language models are probabilistic representations of language, which, given a
string of characters or words can, by some metric, determine the likelihood that
the string resembles real language and not formless nonsense.

1

Sun Rain

0.2

0.7

0.8 0.3

Figure 1: Markov chains are commonly represented using diagrams.

More advanced language models (LLMs, or Large Language Models) are
capable of forming their own language with adequate clarity. As it turns out,
the language model required to break substitution ciphers is very simple. We
will return to language models later.

3 Markov Chains

A Markov chain is a process along a set of possible states S1, S2,⋯, Sn along
with probabilities representing movement from one state to another.

We might have our states represent the rain, and our probability chart may
be as follows:

Sun Rain
Sun 0.8 0.2
Rain 0.7 0.3

According to this chart, if on Monday it is sunny, the chance of it raining on
Tuesday is 0.2, and if on Friday it rains, it will be sunny the next day with prob-
ability 0.7. The Markov chain in this case would be defined as the progression
of the days. See Fig.1 for a visual representation of this Markov chain.

However, this only tells us about the weather tomorrow; we may want to
know about the weather next week. From here, it becomes beneficial to represent
Markov Chains using matrices.

[0.8 0.2
0.7 0.3

]

We refer to this as the transition matrix of our Markov chain. Let pkij be the
probability that we will be in state j after k iterations given that we are currently
in state i. In our example, we let state s denote sun and state r denote rain. p1ij
is given by the chart for all i, j ∈ s, r, but we may want to compute p2sr. There
are two possiblities; we either have Sun → Rain → Rain or Sun → Sun → Rain.
The first occurs with probability 0.2 ∗ 0.3 = 0.06 and the second occurs with
probability 0.8 ∗ 0.2 = 0.16. Summing the two gives us a probability of 0.22.
More generally, p2ij = ∑

k

pikpkj . This definition is very important, due to its

resemblence to matrix multiplication. By induction, we have the following:

2

Theorem 1. Letting A be the transition matrix of a Markov chain and pkij be
the probability that starting from state i, we will be in state j in k iterations,
then pkij is equal to entry i, j of Ak.

Evaluting A2 for our weather matrix gives us the following. Note that the
rows still sum to 1.

[0.78 0.22
0.77 0.23

]

We don’t see anything interesting let, so let’s try computing A20. This gives us

[0.77778 0.22222
0.77778 0.22222

]

It can be inferred from this that lim
k→∞

Ak = [
7
9

2
9

7
9

2
9

] Moreover, we have the fol-

lowing theorem.

Theorem 2. Let A be the matrix of a Markov chain such that there exists some
k such that the entries of Ak are nonzero. Then, as k → ∞, Ak approaches a
matrix B with all rows equal to the vector v. Furthermore, vA = v.

We will not prove the first fact, but we will prove vA = v. We will, however
provide some intuition for the existence claim. Essentially, what the Ak claim
states is that for all pkij there exists some k such that pkij > 0. This means that it
should not be possible for us to leave a state and never come back. Additionally,
this condition upholds that there will never be states practically inaccessible to
us.

Proof. Let lim
k→∞

Ak = B. We have B = lim
k→∞

Ak = lim
k→∞

Ak∗A = A∗(lim
k→∞

Ak) = AB

Since all of the rows of B are equal to v, it follows that v = Av.

Those familiar with linear algebra may note that v is the eigenvector of A
with an eigenvalue of 1. This means it is possible to compute v using linear
algebra techniques, but this tends to get complex and unreasonable for large A.
It is much more common to simply guess v and check that vA = v. This may
sound unintuitive, but it is the basis behind the Metropolis algorithm.

4 The Metropolis-Hastings Algorithm

Now we tackle the the problem of algorithmically breaking substitution ciphers.
Language models are useful here, as they provide some metric of determining
whether or not a key is satisfactory. A function helpful for developing a useful
language model for substitution ciphers is one that, given a character and a
character preceding it, returns the likelihood of such a combination being rea-
sonable. A language model could use all the consecutive letter pairs in a string

3

to figure out the likelihood of a string being reasonable English.

This discussion of a letter being determined by the letter before it may sug-
gest the use of Markov chains, but this is not the form Markov chains take in the
Metropolis algorithm. During our definition of Markov chains, we discussed the
significance of “states”. For example, the states in our weather example would
be the sun and the rain. We can define our states to be possible keys, of which
there are 26! ≈ 4 ∗ 1026. From here, all we need to define are our probabilities,
which we will use our language model for.

Let g(a, b), where a and b are characters, be the probability that, given
a, b follows. One possible way to define this function is by programmatically
analyzing a text for data on character usage.1 Furthermore, if we let C, our
ciphertext, be an ordered multiset of characters c1, c2,⋯, cn, we can define a

function l(C) =
n−1
∏
i=1
(g(ci, ci+1)) as a way of representing the likelihood of C being

a valid string of letters. Finally, define the permutation f ∶ {letters}→ {letters}
as our key. The Metropolis Algorithm is as follows.

• Pick f at random.

• Swap the images of two random values of the domain of f , and let this
new key be f ′.

• Let p = l(f ′(C))
l(f(C)) .

• Change f to f ′ with probability min(1, p).

• Repeat from step 2, and after a set amount of iteration, typically in the
thousands, halt the algorithm.

At first, step 3 may seem counterintuitive; if f ′ turns out to be worse than
f , why switch? However, it is important to note that from any state Sn, where
the states are our possible keys, only (n

2
) new states are attainable, as this rep-

resents all the possible pairs of values whose images under f can be swapped.
Without step 3, we could get stuck. Every possible change could result in a
worse key, and yet the current key may not be the best possible key. This is
why introducing a probabilistic element is necessary.

This algorithm was investigated in depth in [CR10], in which it was tested
against an encoded sentence from the Dickens novel “Oliver Twist”. The de-
coding took 2200 iterations, and the sentence made little sense until the very
end. This highlights something remarkable about this algorithm: the fact that
it can decode a message off of very little information. Substitution ciphertexts
tend to be easier to decode if they are lengthy, as they provide more information

1Mathematicians love using Tolsoy’s “War and Peace” for this.

4

on the relative frequency of characters and bigrams.

The fundamental idea behind the Metropolis algorithm lies in the fact that
the transtion matrix A of our Markov chain representing this algorithm has a
stationary distribution, and the row vector representing it is such that its i-th
element is equal to the likelihood of the key fi.

It is not obvious that a stationary distribution of A exists. Recall theorem
2. For all entries of A, does there exist a k such that that entry of Ak are
nonzero? There does. We can restate this fact as: “There exists some k such
that it is possible to move from one state Si to any other state Sj in k steps, or
pkij > 0 for all i, j and some k. This is true for the Metropolis algorithm. Given
a random key f and another key f ′, it is possible to recieve f ′ from swapping
values among the image of f .

4.1 More on Metropolis-Hastings

The Metropolis algorithm has proven very useful in breaking substitution ci-
phers, but this is not its only application. More, generally, the Metropolis
algorithm involves choosing an intial state x0, computing a candidate x′t, then
letting xt+1 ∶= x′t with probability min(g(x

′

t)
g(xt) ,1), where g is some function that

determines the “quality” of x. Otherwise, xt+1 ∶= xt.

Common applications of the Metropolis algorithm include approximating
values of integrals and approximating probability distributions.

References

[CR10] Chen and Rosenthal. Decrypting classical cipher text using markov
chain monte carlo. Technical report, University of Toronto, 2010.

[Dia09] Diaconis. The markov chain monte carlo revolution. Bulletin of the
American Mathematical Society, 2009.

[Low] Lowen. Efficient search with markov chains. Blog Post.

[RS18] Rubinstein-Salzedo. Cryptography. Springer, 2018.

5

