
Primality Testing

Hyunjae Oh

Abstract

In this essay we will discuss methods of testing if a number is prime
and finding large prime numbers.

1 Introduction

Finding large primes is an extremely important part of cryptography. From
generating massive fields over modulo p to creating computationally difficult
problems such as the discrete logarithm problem to add security, it’s no
wonder that cryptographers have invented numerous methods to find large
primes. In this essay, we will discuss some methods of primality testing and
understand the logic of how they work.

2 Fermat Primality Testing

Theorem 1 (Fermat’s Little Theorem) If p is a prime number and a is any
integer such that p ∤ a, then ap ≡ a (mod p).

Proof. Let us prove the corollary to Fermat’s Little Theorem which states
that ap−1 ≡ 1 (mod p). Every integer can be written as 0, 1, 2, . . ., p-1 (mod
p). Let’s ignore 0 (mod p) because those are the multiples of p, and p ∤ a.
Let’s now take the set of numbers 1, 2, . . ., p-1 and multiply them by a. We
get:

a, 2a, . . ., (p-1)a
These are the first p-1 multiples of a. Now we want to show that these

multiples of a give unique numbers for modulo p. Let’s assume that two of
these multiples give the same number modulo p. That means that for some
unique r < p and s < p, ra ≡ sa (mod p). Let’s rewrite this as

1

a(r − s) ≡ 0 (mod p)
since p ∤ a, that means that p | (r − s) for this congruence to be true.

But since r < p and s < p, the only way for p | (r − s) to be true is if r =
s, which contradicts our assumption that r and s are unique. Therefore for
each multiple of a, you get a unique number modulo p.

From this realization we get that
∏p−1

i=1 ia ≡
∏p−1

i=1 i ≡ (p − 1)! (mod p),
or the product of the multiples of a is congruent to (p − 1)!. We can also
simplify

∏p−1
i=1 ia = a ∗ 2a ∗ . . . ∗ (p− 1)a as

ap−1(p− 1)!.
Therefore, ap−1(p−1)! ≡ (p−1)! (mod p). Since we know that p ∤ (p−1)!,

we can divide both sides by (p− 1)! and get that ap−1 ≡ 1 (mod p).
So does that mean we can just check if Fermat’s Little Theorem holds

true for some number n, then that n is prime? Unfortunately no. Even
though we know that FLT holds true for all prime numbers, it also holds
true for some odd composite numbers as well. For example, 391−1 ≡ 1 (mod
91), but 91 = 13 ∗ 7. These numbers are called pseudoprimes . But can’t we
just change the base a until there is a very high probability that a number
is prime or not? Unfortunately again, there are odd composite numbers n
such that for any base a, an−1 ≡ 1 (mod n). These are called Carmichael
numbers. Some examples are 561 = 3 ∗ 11 ∗ 17, 1105 = 5 ∗ 13 ∗ 17, and
1729 = 7 ∗ 13 ∗ 19. We can see that for any a < n, a561−1 ≡ 1 (mod 561),
a1105−1 ≡ 1 (mod 1105), and a1729−1 ≡ 1 (mod 1729). There is a method
called the Miller-Rabin Primality [Mil76] test to determine whether or not a
number is Carmichael or not, but we will not be discussing it in this paper.

3 Willan’s Formula

Theorem 2 (Wilson’s theorem) If p is a prime number, then (p− 1)! ≡ −1
(mod p). This theorem is the main component that makes Willan’s formula
work.

Proof. Let us write out (p−1)! as (p−1)(p−2) . . . (2)(1). Since p is a prime
number, then that means (p − 1)(p − 2) . . . (2)(1) is a field modulo p. That
means each number n should have an inverse n−1 such that n∗n−1 ≡ 1 (mod
p). That means if we pair each number with its inverse, most of them will
equal 1 modulo p, except for the numbers x that are its own inverse. We
can solve for these x by setting up the congruence x ∗ x ≡ x2 ≡ 1 (mod p).

2

Subtracting 1 from both sides we get x2 − 1 ≡ (x − 1)(x + 1) ≡ 0 (mod p).
We get that if x− 1 ≡ 0 (mod p) then x ≡ 1 (mod p) and if x+ 1 ≡ 0 (mod
p) then x ≡ −1 (mod p). We notice that −1 ≡ p − 1 (mod p). Therefore,
most of the terms match with their inverse and our congruence becomes
(p− 1)! ≡ (p− 1)(1)(1) . . . (1)(1) ≡ (p− 1) ≡ −1 (mod p).

Postulate 3 (Bertrand’s Postulate) For any integer n > 1, there exists some
prime p such that n < p < 2n. This postulate will help with the bound for
the summation in Willan’s formula.

Now let’s talk about Willan’s formula. [WIL64] Here it is:

pn = 1 +
∑2n

i=1⌊(
n∑i

j=1⌊(cos
(j−1)!+1

j
π)2⌋

)1/n⌋
where pn is the nth prime. Let us make some sense of this formula,

starting from (j−1)!+1
j

(1). (j−1)!+1 may seem familiar, and it is in fact just

Wilson’s theorem. If and only if j is a prime will (j − 1)! + 1 be a multiple
of j. Therefore, (1) will only output an integer if j is a prime number.

Next, we multiply (1) by pi, input it into a cosine function, square it,
and then take the floor. For k ∈ Z, cos(kπ) = ±1. If k /∈ Z, then −1 <
cos(kπ) < 1. Therefore, if we square cos(kπ), then we will get 1 if k is an
integer, and some value 0 ≤ cos(kπ) < 1 otherwise. We can then take the
floor of cos(kπ), which will give us either 1 or 0. Recall that if j is prime,

then (1) is an integer. That means that ⌊(cos (j−1)!+1
j

π)2⌋ (2) will give us 1 if
j is prime, and 0 otherwise.

Now let us consider ⌊(n∑i
j=1(2)

)1/n⌋ (3). The sum
∑i

j=1(2) simply counts

the number of prime numbers from 1 to i and then adds one, and will always
be an integer greater than or equal to 1. If we look at the graph of f(n) =
(n
s
)1/n where s ∈ N, we get that 0 < f(n) < 2. We find that f(n) ≥ 1 for

n ≥ s. If we take the floor of f(n), we get that f(n) = 1 for n ≥ s, and 0
otherwise. This means that (3) will output a 1 if n ≥ pn + 1 where pn is the
#primes ≤ i.

Finally, if we take the summation of (3) from 1 to 2n, we will get the nth
prime number - 1. Clearly 2n ≥ 2n for an integer n > 1 and by Bertrand’s
postulate, we are guaranteed to check i’s that are greater than the nth prime.
The final step is to just add 1 to get the nth prime number.

So now we have a formula to calculate the nth prime number. What’s the
point of any other primality tests? Willan’s Formula has a major flaw that
makes it near useless: it takes an extremely long time to compute. Remember

3

that we have to calculate (j − 1)! for every j from 1 to i, and then iterate
those i’s from 1 to 2n. Of course, we can massively improve the 2n bound,
but it still won’t change the fact that (j − 1)! will take a factorial amount of
time to compute. This makes Willan’s formula only useful for very small i,
which isn’t very helpful. However, perhaps this formula can be used in the
future if we manage to create quantum computers that can calculate large
factorials in reasonable amounts of time.

4 Lucas-Lehmer Test

Definition 4 (Mersenne Numbers) A Mersenne number is a number in the
form 2n − 1.

Definition 5 (Mersenne Primes) A Mersenne Prime is a prime number
that is also a Mersenne Number. If n is composite, then 2n − 1 must be
composite. If n is prime, then 2n − 1 may or may not be a prime. A trivial
proof is 2ab − 1 can be written as (2a − 1)(2a + 22a + 23a + . . . + 2(b−1)a). a
and b are symmetrical and can be switched if one wishes to.

The Lucas-Lehmer Test [BRU93] is meant to determine whether the nth
Mersenne number is prime, if n is a prime number. Let’s start by defining
the Lucas-Lehmer sequence:

si = 4 if i = 0, and si = s2i−1 − 2 otherwise.
The Lucas-Lehmer Test says that the Mersenne number Mp is prime only

when sp−2 ≡ 0 (mod Mp).

Proof. Let ω = 2 +
√
3 and ω̄ = 2 −

√
3. ωω̄ = 22 −

√
3
2
= 4 − 3 = 1.

We will create a group X that has element ω then prove the Lucas-Lehmer
test using a contradiction.

Lemma 6 Sm = ω2m + ω̄2m, where Sm is the mth number in the Lucas-
Lehmer Sequence. Here is a simple proof by induction: S1 = 42 − 2 = 14.

ω21 + ω̄21 = ω2+ ω̄2 = (2 +
√
3)

2
+(2−

√
3)

2
= 4+4

√
3+3+4− 4

√
3+3 =

8 + 6 = 14. So S1 works. Now assume that Sk = ω2k + ω̄2k works. Then

Sk+1 = ω2k+1
+ ω̄2k+1

= S2
k − 2. S2

k − 2 = (ω2k + ω̄2k)
2 − 2 = ω2k+1

+ ω̄2k+1
+

2ω2k ω̄2k − 2 = ω2k+1
+ ω̄2k+1

+ 2 ∗ 1− 2 = ω2k+1
+ ω̄2k+1

.
If Mp divides Sp−2 = ω2p−2

+ ω̄2p−2
, then by definition of modular arith-

metic ω2p−2
+ ω̄2p−2 ≡ 0 (mod Mp). Let us write this as ω2p−2

+ ω̄2p−2
=

4

RMp for some integer R. Multiply both sides by ω2p−2
we get that ω2p−1

=

RMpω
2p−2 − 1 (1). Square both sides and we get ω2p = (RMpω

2p−2 − 1)
2
(2).

Lemma 7 Let X be a set with a binary operation which is associative and
has an identity. If X∗ is the set of elements in X that have an inverse with
respect to multiplication, then X∗ forms a group. Here is a simple proof:
Since X∗ has an identity with respect to multiplication, clearly 1 ∈ X∗. If
elements x1 and x2 have inverses x−1

1 and x−1
2 respectively, then x1x2 has an

inverse x−1
1 x−1

2 and the set is closed. This lemma will help us show that the
group for our proof really is a group.

Lemma 8 If G is a finite group then the order of an element is less than
or equal to the order of the group. If a ∈ G, and ab = 1, then the order of
a divides b. This lemma will help us write inequalities that will lead to our
contradiction.

Now let’s begin the actual proof for the Lucas-Lehmer test. Assume
that Mp is composite and Mp divides Sp−2 = ω2p−2

+ ω̄2p−2
, and pick some

prime divisor q such that q2 ≤ Mp and q ̸= 2. Now let Z/qZ be the set
of integers modulo q, and X be the set {a +

√
3b : a, b ∈ Z/qZ}. Let’s

define multiplication on X as (a1 +
√
3b1)(a2 +

√
3b2) = (a1a2 + 3b1b2) +

(a1b2+ b1a2)
√
3. X is associative and has an identity 1 under multiplication.

Therefore, X∗ is a group according to Lemma 7. There are q possible values
of a and q possible values of b. Therefore, the order of X∗ is q2 − 1 since
we don’t want to count 0 which isn’t included in X∗ as it does not have an
inverse that can make it equal to the identity 1 under multiplication. By
Lemma 8, the order of any element in X∗ is ≤ q2− 1. Now consider ω which
is an element of X and X∗. Since q | Mp, RMpω

2p−2
= 0 as an element of X.

Therefore, (1) and (2) become ω2p−1
= −1 and ω2p = 1 respectively. That

means that the order of ω in X∗ is 2p. Using Lemma 8, we know that the
order of ω is less than the order of X∗, written as 2p ≤ q2 − 1. However,
q2 − 1 < q2 ≤ Mp = 2p − 1 and we have a proof by contradiction, so Mp has
no prime divisors q and is a prime number.

5 AKS algorithm

The AKS test, named after its creators Manindra Agrawal; Neeraj Kayal;
and Nitin Saxena, is arguably one of the best primality tests we know of

5

today. Unlike the previously mentioned primality tests that all have some
sort of limitation, the AKS test doesn’t really have any limitations and works
for any prime number.

Lemma 9 If an integer n ≥ 2 and an integer a has gcd(a, n) = 1, then n is
prime if and only if (X + a)n ≡ Xn + a (mod n).

Proof. We want to show that the coefficients of (x + 1)n − (xn + 1) are
divisible by n. The binomial theorem states that (x + 1)n =

∑n
k=0

(
n
k

)
xk.

Then (x + 1)n − (xn + 1) =
∑n−1

k=1

(
n
k

)
xk. If n is prime, then n |

(
n
k

)
for

k = 1, 2, . . . , n−1 because n will only have factors that are 1 and itself, so any
number < n will not share a prime factor with n.

(
n
k

)
= n!

k!(n−k)!
, and k < n,

as well as n− k < n, so a prime number n will always divide
(
n
k

)
. Now let’s

suppose that n is composite, and n = pd where p is a prime and d is an integer
such that p, d ∈ {1, 2, . . . , n−1}. To prove that n ∤

(
n
p

)
if n is composite, let’s

see that
(
n
p

)
= n∗(n−1)∗...∗(n−p+1)

p!
. Then n∗(n−1)∗...∗(n−p+1)

p!
= n∗l for some l ∈ N.

l = (n−1)∗(n−2)∗...∗(n−p+1)
p!

. If p does not divide the numerator, then l /∈ N.
(n−p+1) ≡ 1 (mod p) because n = pd, which means n−p = pd−p = p(d−1)
is clearly divisble by p, so (n − p + 1) ≡ 1(mod p). Continue this pattern,
so that (n− p+ 2) ≡ 2 (mod p), (n− p+ 3) ≡ 3 (mod p), all the way up to
(n− 1) ≡ (p− 1) (mod p). We get that (n− 1) ∗ (n− 2) ∗ . . . ∗ (n− p+1) ≡
1 ∗ 2 ∗ . . . ∗ (p − 1) ≡ (p − 1)! (mod p). Since p is prime, (p − 1)! ≡ −1
(mod p) by Wilson’s theorem. Since (p− 1)! ̸≡ 0 (mod p), p does not divide
(n− 1) ∗ (n− 2) ∗ . . . ∗ (n− p+ 1) so l is not an integer, and n ∤

(
n
p

)
.

The actual algorithm to deteremine whether a number n is prime goes
like this:

1. Check if there exists integers a, b > 1 such that n = ab. If so, then n is
not prime. Otherwise, move on.

2. Find the smallest r such that the order of r modulo n is > log2(n).

3. If 1 < gcd(a, n) < n for some a ≤ r, then n is composite.

4. If n ≤ r then n is prime.

5. For a = 1 to ⌊
√
ϕ(r)log(n)⌋, compute (x+ a)n ≡ xn + a (mod xr − 1,

n). If this is ever not true, then n is composite.

6. Otherwise, n is prime.

6

Step 1 is just a filter so that the rest of the algorithm doesn’t break.
The main steps are steps 2 and 5, but let’s also briefly explore steps 3 and
4. If 1 < gcd(a, n) < n, then clearly n is not prime as it shares a factor
with some number a ≤ r. In step 4, if n ≤ r then we have checked that all
integers ≤ n do not share any factors with n, so n is clearly prime. Step 5 is
the most clever part of the algorithm, because it greatly lessens the time to
check whether Lemma 9 holds for n. For a proof, see [AKS04].

References

[Mil 76] Gary L. Miller. 1976. Riemann’s hypothesis and tests for primality.
Journal of Computer and System Sciences 13 (3): 300-317. Working papers
presented at the ACMSIGACT Symposium on the Theory of Computing
(Albuquerque, N.M., 1975).

[WIL64] Willans CP. On Formulae for the Nth Prime Number. The
Mathematical Gazette. 1964;48(366):413-415. doi:10.2307/3611701

[BRU93] Bruce, J. W. (1993). A Really Trivial Proof of the Lucas-Lehmer
Test. The American Mathematical Monthly, 100(4), 370–371. https://doi.org
/10.1080/00029890.1993.11990414

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2004.
PRIMES is in P.Annals of Mathematics (2) 160 (2): 781-793. https://doi.org/
10.4007/annals/2004.160.781.

7

