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1 Introduction

In random number generation, there are two broad kinds of random number
generators (RNGs): pseudo-random number generators (PRNGs) and true ran-
dom number generators (TRNGs). While both serve the purpose of generating
random numbers, TRNGs are not used often due to, among other issues, being
non-deterministic and slow. An example of TRNGs example that comes to mind
is Cloudflare’s use of a lava lamp wall and cameras to collect entropy: slow but
“true”.

In cryptography, RNGs are needed to create unattackable keys, the founda-
tion of many cryptographic systems. In zero-knowledge proofs, RNGs are cru-
cial for creating unpredictable challenges. In password salting, RNGs introduce
randomness to hashed passwords, ensuring that identical passwords produce
unique hash values, thus protecting against common attacks such as rainbow
table lookups. Without reliable RNGs, many of our security mechanisms would
be opened up against new methods of attack.

PRNGs, as the name suggests, generate numbers that are not truly ran-
dom but rather deterministic sequences that appear random. But what are the
specific characteristics that we look for in order to have a strong PRNG?

1. Determinism: A PRNG, when initialized with a specific seed, will always
produce the same sequence of numbers. This is crucial for reproducibil-
ity in simulations, testing, and debugging, where consistent results are
necessary to validate outcomes.

2. Period Length: PRNGs have a finite sequence length, known as the
period, after which the sequence repeats. A long period is essential to
avoid patterns or repetitions that could undermine the effectiveness of the
random numbers, especially in applications requiring vast quantities of
random values.

3. Uniform Distribution: The output of a PRNG should be uniformly
distributed over the desired range, ensuring that each possible value has
an equal chance of being selected. This uniformity is critical for fair sim-
ulations, statistical sampling, and modeling.
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4. Statistical Independence: Successive numbers generated by a PRNG
should be independent of each other, meaning that knowledge of one num-
ber does not provide any information about the next. This independence
prevents predictability and ensures the integrity of the random sequence.

5. Efficiency: PRNGs are designed to be computationally efficient, pro-
ducing random numbers quickly and with minimal resource usage. This
efficiency is vital in real-time applications or scenarios requiring a large
volume of random numbers.

In cryptographic contexts, standard PRNGs are insufficient due to their
predictability. While PRNGs produce seemingly random sequences, their out-
puts can often be predicted given enough previous values. In contrast, Crypto-
graphically Secure PRNGs (CSPRNGs) are specifically designed to resist such
vulnerabilities. CSPRNGs possess additional security properties that make it
computationally infeasible to predict future outputs or reverse-engineer the ini-
tial seed, even with knowledge of previous outputs.

2 Mersenne Twister

The Mersenne Twister is a PRNG that generates random numbers through
a two-step process: value extraction from its internal state and subsequent
tempering. It gains its name for its long period length equal to the Mersenne
prime 219937

2.1 Tempering Process

For a w-bit word length (typically w = 32 for MT19937), the algorithm extracts
a value xk from the state. This raw value undergoes tempering to improve its
statistical properties, defined by the following transformations:

y ≡ x⊕ ((x ≫ u)&d)

y ≡ y ⊕ ((y ≪ s)&b)

y ≡ y ⊕ ((y ≪ t)&c)

z ≡ y ⊕ (y ≫ l)

where ⊕ denotes bitwise XOR, & is bitwise AND, ≫ and ≪ are right and
left bitwise shifts, and u, d, s, b, t, c, and l are carefully chosen constants. This
process ensures a more uniform distribution of output numbers in the range
[0, 2w − 1] which makes the Mersenne Twister so useful.

2.2 Twisting Process

The “twister” mechanism updates the internal state using a matrix linear re-
currence over the finite binary field F2. The state update follows the recurrence
relation:
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xk+n := xk+m ⊕ ((xu
k |xl

k+1)A) (1)

where:

• n is the degree of recurrence

• m is the middle word

• xu
k represents the upper w − r bits of xk

• xl
k+1 represents the lower r bits of xk+1

• A is a twist transformation matrix

The matrix A is defined in rational normal form:

xA =

{
x ≫ 1 if x0 = 0

(x ≫ 1)⊕ a if x0 = 1
(2)

where x0 is the lowest order bit of x and a is a coefficient.
This twisting operation ensures unpredictable state evolution, contributing

to the generator’s exceptionally long period of 219937 − 1, which is a Mersenne
prime.

2.3 Attacking the Mersenne Twister

The attack on the Mersenne Twister exploits the ability to reconstruct an
Mersenne Twister’s internal state from its outputs. This weakness stems from
the reversible nature of the tempering function used in the final stage of number
generation.

2.3.1 Attack Introduction

The attack begins by collecting a sufficient number of consecutive outputs from
the target Mersenne Twister generator. Typically, this requires 624 outputs,
which corresponds to the size of the internal state array. Once these outputs are
obtained, the attacker can use a process to “untemper” (reverse the tempering
function) applied to each output. This reversal is possible because the tempering
operations, while designed to improve the statistical properties of the output, are
mathematically invertible. By applying the untemper function to each of the 624
collected outputs, the attacker can reconstruct the exact values in the internal
state array of the Mersenne Twister. This reconstructed state is identical to the
state of the original generator at the point just before it produced the first of
the 624 observed outputs.
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2.3.2 Example Untempering

Given the example tempering steps earlier, to untemper we simply need to
reverse the operations. The specific constants for the Mersenne Twister are
typically hardcoded into its implementation and are used if discovered.

Given the tempering operations:

y ≡ x⊕ ((x ≫ u)&d)

y ≡ y ⊕ ((y ≪ s)&b)

y ≡ y ⊕ ((y ≪ t)&c)

z ≡ y ⊕ (y ≫ l)

The untempering steps can be represented as follows:

y ≡ z ⊕ (y ≫ l)

y ≡ y ⊕ ((y ≪ t)&c)

y ≡ y ⊕ ((y ≪ s)&b)

x ≡ y ⊕ ((x ≫ u)&d)

2.3.3 Attack Conclusion

With the internal state fully reconstructed, the attacker can create a clone of the
original Mersenne Twister. This cloned generator will produce exactly the same
sequence of random numbers as the original from that point forward. This is
because the Mersenne Twister’s next state is entirely determined by its current
state, with no external inputs affecting its progression. Each time the generator
produces a number, it updates its internal state in a deterministic manner. As
long as the attacker’s clone follows the same state update rules, it will remain
in sync with the original generator, continuously predicting all future outputs.

3 Yarrow CSPRNG

Yarrow can be thought of as two separate parts. The first is an Advanced
Encryption Standard (AES) based RNG that depends on a key, and the second
is a process to update that key using truly random noise, similar to a TRNG.
But because once the key is set, Yarrow is deterministic, and for it’s extra
security, it is considered a CSPRNG.

3.1 AES as RNG in Yarrow

At its core, Yarrow uses AES as its primary mechanism for producing random
output. AES is a symmetric block cipher widely used for secure data encryption.
It operates on fixed-size blocks of 128 bits, using keys that can be 128, 192, or
256 bits long. The algorithm processes data through a series of rounds, each
involving four main operations:
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3.1.1 SubBytes Step

Let ai,j represent the byte at position (i, j) in the state matrix. The SubBytes
transformation applies a non-linear substitution using an S-box:

bi,j = S(ai,j)

where S(ai,j) is defined as:

S(ai,j) = A · a−1
i,j + C

Here, a−1
i,j is the multiplicative inverse of ai,j in Galois field GF(28), A is an

invertible matrix, and C is a constant vector. This step introduces non-linearity
and ensures that the transformation is resistant to algebraic attacks.

3.1.2 ShiftRows Step

The ShiftRows operation involves a cyclic permutation of each row i in the state
matrix. Mathematically:

bi,j = ai,(j+si) mod n

where si denotes the shift amount for row i, and n is the number of columns.
For AES, s0 = 0, s1 = 1, s2 = 2, and s3 = 3.

3.1.3 MixColumns Step

Each column of the state matrix is treated as a vector in GF(28) and multiplied
by a fixed matrix M : 

b0,j
b1,j
b2,j
b3,j

 = M ·


a0,j
a1,j
a2,j
a3,j


where M is:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Matrix multiplication in the Galois field GF(28) involves both polynomial

multiplication and addition (XOR), with multiplication carried out modulo the
irreducible polynomial x8 + x4 + x3 + x + 1. This mixing ensures that the
transformation has the desired cryptographic properties, such as resistance to
differential and linear cryptanalysis, by spreading the influence of each byte
throughout the entire state matrix.
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3.1.4 AddRoundKey Step

The AddRoundKey transformation is performed as follows:

bi,j = ai,j ⊕ ki,j

where ki,j is the byte from the round subkey corresponding to ai,j . This
operation is simple bitwise XOR, ensuring that the transformation is easily
reversible and key-dependent.

The number of rounds varies based on the key size: 10 rounds for 128-bit
keys, 12 for 192-bit keys, and 14 for 256-bit keys.

3.2 Yarrow Implementation

Yarrow uses AES in a mode similar to counter-mode encryption. The PRNG
maintains a secret key and a 128-bit counter as part of its internal state. To
generate random numbers, Yarrow repeatedly encrypts the current counter value
using the secret key with AES. The resulting ciphertext block is used as the
random output.

Specifically, Yarrow uses AES over and over again until a random string of
the desired length is achieved:

while(length > 0)

{

n = MIN(length, AES_BLOCK_SIZE);

yarrowGenerateBlock(context, buffer);

osMemcpy(output, buffer, n);

context->blockCount++;

output += n;

length -= n;

}

void yarrowGenerateBlock(YarrowContext *context, uint8_t *output)

{

aesEncryptBlock(&context->cipherContext, context->counter, output);

// Increment counter

for(i = AES_BLOCK_SIZE - 1; i >= 0; i--)

{

if(++(context->counter[i]) != 0)

break;

}

}

After each encryption, the counter is incremented to ensure that each sub-
sequent block of random data is generated from a unique input. This process
effectively turns AES into a secure pseudorandom function, where the security
of the generated numbers relies on the secrecy of the AES key and the large
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space of possible counter values. Periodically, Yarrow updates its key using
accumulated entropy, a process known as reseeding, which helps maintain long-
term security and resist potential attacks. This use of AES allows Yarrow to
quickly generate large amounts of cryptographically secure random data from
a relatively small secret state, making it both efficient and secure for various
applications requiring high-quality random numbers.

3.3 Entropy

While it’s theoretically possible to calculate entropy precisely for a known prob-
ability distribution, real-world entropy sources often have complex, unknown
distributions. This complexity necessitates the use of entropy estimation tech-
niques, which approximate the amount of randomness in a given input.

Entropy, denoted as H, quantifies the average information content or un-
certainty in a random variable X. For a discrete probability distribution, it’s
defined as:

H(X) = −
∑

p(x) log2 p(x)

where p(x) is the probability of outcome x.
In ideal random number generation, we seek maximum entropy, where all

outcomes are equally likely. However, real-world entropy sources rarely conform
to known probability distributions, making exact entropy calculation challeng-
ing. The Yarrow PRNG, leaves entropy estimation to the implementor of the
algorithm. It is expected that the entropy estimation should be conservative in
order to avoid false confidence in the amount of entropy. Examples of entropy
collected include keystrokes, temperature, noise, and other system true random
sources.

3.4 Slow Pool and Fast Pool

Yarrow utilizes a dual-pool system, consisting of a fast pool and a slow pool,
to manage entropy and generate new keys. The fast pool is designed for quick
incorporation of new entropy, allowing for rapid reseeding when any single source
contributes enough entropy to reach a lower threshold. This ensures that the
PRNG can quickly adapt to new randomness inputs. In contrast, the slow pool
takes a more conservative approach, accumulating entropy over a longer period
and requiring multiple sources to reach a higher threshold before triggering a
reseed.

To update the key, the pool is hashed together using SHA-1. The specific
process, however, differs depending on which pool triggers the reseed. For a
fast pool reseed, the current key is combined with the hash of all inputs to the
fast pool since the last reseed, effectively compressing the pool. This new value
becomes the next key, quickly incorporating fresh entropy into the PRNG state.
A slow pool reseed is more comprehensive: it combines the current key, the hash
of all inputs to the fast pool, and the hash of all inputs to the slow pool.
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4 Conclusion

Both RNG methods mentioned in this paper do not reflect the current standard
for random number generation. Instead, they were chosen for their interesting
generation methods. The Mersenne Twister, despite its long period and high-
quality statistical properties, has vulnerabilities to state reconstruction attacks,
leading to the development of its cryptographically secure variant, CryptMT.
Yarrow, with its AES-based design and dual-pool system, represented a more
security-focused approach from the outset. Yarrow was implemented in early
versions of macOS and iOS but was later deprecated in favor of the Fortuna
CSPRNG. The scrupulous reader may question the design choice where Yarrow
uses SHA-1 to construct its keys from the pools. Although SHA-1 is indeed inse-
cure as a hashing algorithm, nothing has yet been published regarding how that
fact may be used to weaken Yarrow. Fortuna solves Yarrow’s entropy estimation
issues by doing away with it altogether, in favor of a 32-pool approach.
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