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1 Introduction

Obtaining mathematical randomness has proven to be a hallmark of modern computer
simulation. Computers are inherently deterministic and predictable, two conventions
which run contrary to the idea of random number generation. Current applications are
manyfold: computer modeling and simulating, statistics, and namely, cryptography.
Padding of ciphertexts and key generation are two examples. However, there exist two
methods that have been uncovered to produce consistent streams of random numbers,
Pseudo-random Number Generators (PRNGs), and True Random Number Generators
(TRNGs). TRNGs make use of atmospheric noise or fluctuations, which tend to behave
with true unpredictability. These work for smaller scale examples, but lack the speed
of calculation necessary for many computer programming purposes. Thus PRNGs,
based on mathematical algorithms, are more feasible for widespread computer usage.
However due to the required processes, PRNGs can never be truly random as an
initial seed of some kind is necessary to generate sequences of numbers. The Mersenne
Twister (MT) was released in 1997 by Makoto Matsumoto and Takuji Nishimura.
MT satisfies many requirement of the ideal PRNG, namely independence, uniformity,
and efficiency. Its period is based on the Mersenne Prime 219937 − 1, a uniquely
long number which bodes well for its security. It also has proved successful against
statistical measures such as K-Distribution and Diehard tests. That being said, it is
not cryptographically secure as it’s based on Linear Recurrence, a method known for
its predictability like in the case of the Linear Congruential Generator, a widely used
PRNG in the past that is now revered as vastly unsecure.

2 Linear Congruential Generator

The linear congruential generator (LCG) is a rudimentary and simply PRNG that uses
a piecewise linear function. This expedites the algorithm, resulting in quickly gener-
ated numbers, though these are generally easily predictable. This predictability can
be observed through a Spectral Test, where hyperplanes will clearly reveal themselves.

The generator operates based upon recurrence:

Xn+1 = (aXn + c) mod m
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where:

1. X is the sequence of pseudo-random values

2. m, 0<m is the modulus

3. a, 0<a<m is the multiplier

4. c, 0<c<m is the increment

5. X0, 0<X0<m is the start value

2.1 Limitations

The period length can prove valuable to increase the successfulness of the algorithm,
but can also greatly compromise it. Appropriate parameters are the difference maker
that can result in a long period length. If a and c are both set to one, for example, the
string of numbers will be a modulo m counter, obviously non random. Logically, there
exist known parameters that yield better results. However, even then, it fails against
a well established algorithm like the Mersenne Twister, which will be discussed next.

3 Mersenne Twister

The generator algorithm is a modification of a Twisted Generalized Feedback Shift
Register (TGFSR). The standard implementation uses a 32 bit word length. Simply
put, the Mersenne Twister relies on matrix linear recurrence over a binary field f2.

3.1 Initialization

The MT algorithm begins by initializing an internal state array with a length N, (usu-
ally of value 624 for MT19937). The array is primed using a seed value. By definition,
the Mersenne Twister is a PRNG, which is therefore determinstic. This in an inher-
ent, unavoidable weakness, so therefore we must generate unique seeds for which the
algorithm operates upon. The process for initialization is as follows:

seed= x1 = (f · (xi−1

⊕
(xi−1 ≫ (w − 2))) + i) mod 2w

where:

1. x is the state array

2. i is the index of said array

3. f is the constant 0x6c078965

4. w is the word size, (32 bits for version MT19937)

5. ≫ is the right bitwise shift operator

6.
⊕

is the bitwise XOR operator
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3.2 MT Theories

The Mersenne Twister generates a sequence of word vectors which act as pseudo-
random inters between 0 and 2w − 1, where w is the dimension of row vectors over
Finite field f2. The MT algorithm is based upon the a recurring equation. A recur-
rence relation is an equation which recursively defines a sequence given prior terms.
The equation is as follows:

xk+n := xk+m

⊕
(xu

k|xl
k+1)A

Where:
Integer n is the degree of recurrence
Integer m, 1≤m≤n
A is a constant w × w matrix chosen to ease the following multiplication

0 1
0 0 1

0 · · · · · · . . .
. . .

1
aw−1 aw−2 · · · · · · · · · a0


k is 0,1,2...
xn is a row vector of a word size w generated by k=0
x0, x1...xn−1 are seeds
xl
k+1 are lower or rightmost bits of xk+1

xu
k are upper or leftmost bits of xk⊕
is a bitwise XOR

| denotes a concatenating operation
xu
k|xl

k+1 is the vector obtained by concatenating the upper w - r bits of xk and the
lower r bits of xk+1 in order. The constant matrix A us then multiplied by the right
by this new vector. The bitwise addition operation is then performed to add xk+m,
and then generates xk+n. The multiplication can be performed with the pair of bitwise

operations: xA =

{
{x≫ 1 if x0 = 0

{(x≫ 1)
⊕

a if x0 = 1
Where: x is (xw−1, xw−2, ..., x0)
a is the bottom row vector of A
≫ denotes right bitwise shift

The k-distribution is a statistical measure that can be used to assess the success
in equidistribution. However, it is improved through a method known as tempering.
Each generated word is multiplied by a w × w invertible matrix T from right yielding
a result of tempering matrix x into z:=xT. T is chosen such that binary operations
can be performed as:

1. y := x
⊕

(x≫ u)

2. y := y
⊕

= ((y ≪ s)&b)
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3. y := y
⊕

= ((y ≪ t)&c)

4. z := y
⊕

= (y ≫ l)

where:
u,s,t,l are shift constants (11,7,15,18 for MT19937)
b and c are tempering bitmasks
≪ denotes a bitwise left shift
& denotes an and operation

These are transformations which temper each word via bitshifting.
The shift register has 624 elements and a 19937 cell output. The following steps show
the workings of the Mersenne Twister algorithm.

Step 0. Create a bitmask for upper and lower bits
u← 1...1︸︷︷︸

w−r

0...0︸︷︷︸
r

;(bitmask for upper w-r bits)

ll← 0...0︸︷︷︸
w−r

1...1︸︷︷︸
r

;(bitmask for lower r bits)

a← aw−1aw−2...a1a0

Step 1.
i← 0
x[0], x[1], ..., x[n− 1]

Step 2.
y ← (x[i]&u)ORx[(i+ 1) mod n]&ll
;computing(xu

k|xl
k+1)

Step 3.
x[i]← x[(i+m) mod n]XOR(y ≪ 1)

XOR

{
{0 if the least significant bit y = 0
{a if the least significant bit y = 1

;(multiplying A)

Step 4.
;(Calculate x[i]T)

y ← x[i]

y ← y XOR (y ≫ u) ;(shiftright y by u bits and add to y)

y ← y XOR (y ≪ s)

y ← y XOR (y ≪ t)

y ← y XOR (y ≫ l)

output y
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Step 5.
i← (i+ 1) mod n

Step 6.
Return to Step 2.

It is worth noting the parameters importance on the algorithms effectiveness. There
are many areas where difference in value can greatly effect the outcome, such as: period
parameters, intege]r parameters (w size), the degree of recursion n, the middle term
m, the separation point r, vector parameter a (Matrix A), integers parameters u,s,t,l,
and vector parameters b and c. The original publishing on the Mersenne Twister goes
into great depth on how to accurately choose these values.

4 Limitations

The initialization earlier described is one of the largest issues associated with the initial
version of the Mersenne Twister. Should the initial state possess disproportionately
many zeros, then the generated sequence of numbers will similarly contain an excess of
zeroes for as many as 1000 iterated generations. If seeds are systematically chosen, such
as being multiples, this will have a negative bearing on the generated values. These
issues were realized by Matsumoto and Nishimura, and fixed the implementation code.

Another relevant issue is pertinent to its use cryptographically. The Mersenne Twister’s
original variant was not preferred for secure usage due to its relative predictability.
Due to its large output of 19937 bits and linearity, the next state can be obtained. To
originally overcome this discrepancy, the outputs were run through a hash function
known as SHA-1. Simply put, a hash function is an algorithm which takes an input
and returns a fixed-size string of bytes, typically mapping it in a unique way. These
functions have widespread influence within the field of cryptography. The CryptMT
variant was based upon this principle.

5 CryptMT

CryptMT is a stream cipher, an encryption technique that parses byte by byte, trans-
forming plain text into code via a certain key. The algorithm variant makes significant
changes to MT to enhance cryptographic usage. Additional bitwise operations are
performed along with non-linear transformations, which proves largely successful to
the pseudo-random nature of the output string. It retains the uniquely large period
held by MT. These modifications are not bulletproof to attacks, but they do obfuscate
the process, resulting in an initial state that’s much more difficult to reverse-engineer.
It is largely viewed as safe for data-encryption and other similarly important use cases.
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