
THE KNAPSACK CRYPTOSYSTEM

EZRA FURTADO-TIWARI

Abstract.
We introduce the Merkle-Hellman knapsack cryptosystem, attacks on the cryptosystem,

and a more secure knapsack cryptosystem called the Chor-Rivest cryptosystem.

1. The Knapsack Cryptosystem

The knapsack cryptosystem, built around the NP-hard subset sum problem, relies on the
fact that Alice can compute subset sums on an “easy” array and then obfuscate it so that Eve
cannot compute subset sums in polynomial time. They thus constructed their cryptosystem
around superincreasing arrays.

Definition 1.1. Let a1, a2, . . . , an be a sequence. We say it is superincreasing if ai >
∑i−1

j=1 aj
for all 1 < i ≤ n.

The main advantage of using superincreasing arrays is that they allow us to “greedily”
solve the knapsack problem in linear time.

Lemma 1.2. Given a superincreasing sequence {an} and an integer k, we may find a sub-
sequence of {an} with sum k (or prove that no such subsequence exists) in polynomial time.

Proof. Assume that ai > k for some 1 ≤ i ≤ n. Then for j > i, it follows that aj > k as
well. Now assume that ai < k for some i. Either we choose the element ai to be part of the
subsequence, meaning that we must find a subsequence with sum k − ai from the first i− 1
elements of {an}, or we do not choose it, meaning we must find a subsequence with sum

k > ai >
∑i−1

j=1 aj, so we must choose the element ai. Once we complete this procedure, we
may verify whether the sum of the elements we choose is equal to k. If it is, we have found
a valid subsequence, and if it does not, then no such subsequence exists. ■

From this property, Merkle and Hellman constructed the following cryptosystem in 1978
and published it in [MH78].

Definition 1.3 (Merkle-Hellman Cryptosystem). The Merkle-Hellman Cryptosystem con-
structs a public and private key as follows:

(1) Alice generates a superincreasing array {an}.
(2) Alice randomly generates some k >

∑n
i=1 ai, and an integer c < k such that gcd(c, k) =

1. This pair (c, k) is the private key.
(3) Alice constructs a new sequence {bn} such that

bi = ai · c (mod k).

She uses this sequence as the public key.

Date: August 16, 2024.
1

2 EZRA FURTADO-TIWARI

(4) To encrypt a message m with n binary digits, Bob computes the sum

x =
n∑

i=1

mibi

and sends it to Alice.
(5) When Alice decrypts the message x, she will compute x′ = x · c−1 (mod k), and solve

the easier version of the subset sum problem on her sequence {an} with sum x′.

Remark 1.4 (Iterative Knapsack Cryptosystem). A seemingly more secure version of the
knapsack cryptosystem is the iterated knapsack cryptosystem, in which a sequence of suffi-
ciently large ci and ki are chosen such that

bi = (((ai · c0) mod k0) · c1) mod k1 · . . . · cm mod km).

2. Shamir’s Attack

Shortly after, in 1982, Shamir published [Sha82], an outline of an attack on the single-round
Merkle-Hellman cryptosystem. Although it did not break the iterative cryptosystem they
proposed, it contained ideas that allowed other cryptographers to construct more powerful
attacks.

Theorem 2.1 (Shamir’s Attack). Given b1, . . . , bn generated by the procedure described in
1.3, we can solve the knapsack problem on it in polynomial time in n.

The main idea behind Shamir’s attack is that we can construct an algorithm to find
some decryption pair (c′, k′) such that the sequence {dn} given by di = bi · c′ (mod k′) is
superincreasing. Note that we do not have to choose c′ = c and k′ = k, as any superincreasing
array will allow us to decrypt the message in polynomial time.

Note that the congruence

bi(c
′)−1 ≡ ai (mod k′)

is equivalent to the equation

bi(c
′)−1 = qik

′ + ai

for some integer qi. Note that this implies

(c′)−1

k′ − qi
bi

=
ai
bik′ ,

meaning that qi
bi
is close to (c′)−1

k′
. This is because we expect ai ≈ bi (as bi is obtained through

a pseudorandom process), and k′ must be large in order for the cryptosystem to be secure.
Then we have

qi
bi

− q1
b1

=
a1
k′b1

− ai
k′bi

,

which gives us

qib1 − q1bi =
1

k′ (a1bi − aib1).

From here we note that if M >
∑∞

i=1 ai and {an} is superincreasing, we have 0 ≤ ai ≤ M
2n−i ,

so that for 1 ≤ i ≤ g,

|qib1 − q1bi| ≤
M

2n−g
.

THE KNAPSACK CRYPTOSYSTEM 3

We can approximate M by maxni=1 bi and construct an integer program to compute the qis.
More precisely, we construct the integer program

|qib1 − q1bi| ≤
M̃

2n−g
, 2 ≤ i ≤ g,

1 ≤ q1 ≤
M̃

2n−g
− 1,

where M̃ = maxni=1 bi. We choose small g and compute the results of this integer program
for all

(
n
g

)
subsets of {bn} that could form the first g elements in sorted order. Due to a

result from Lenstra we may find a solution to this integer program in polynomial time, and
in fact this particular program is likely to have only one solution. By checking this case and

some related ones, we can compute (c′)−1

k′
in polynomial time, which allows us to recover a

decryption pair.

3. More Powerful Attacks

Although Lenstra’s algorithm for integer programming can be proven to run in polynomial
time, it is theoretically very inefficient due to the high polynomial degree in its runtime.
However, the discovery of this algorithm motivated the creation of more efficient ways to
solve the knapsack problem in certain cases. The following attack is called a low-density
attack and relies on a property called the density of knapsack problems.

Definition 3.1. We define the density of a subset sum problem to be

d =
n2

log2maxni=1 ai
.

Theorem 3.2. The subset sum problem can be solved in polynomial time if its density is
less than 0.65.

Definition 3.3. An integer lattice L is a subgroup of Zn under addition given by n linearly
independent basis vectors in Rn (note that by definition of a group, L must contain all linear
combinations of the basis vectors). We can write down an integer lattice using an n × n
matrix

V =

v1

v2

...
vn

where the vis are the basis vectors.

Let {bn} be the public key for a knapsack cryptosystem and let s be the sum required.
Consider the (n+ 1)× (n+ 1) lattice L given by the matrix

(3.1) V =

1 0 . . . b1
0 1 . . . b2
...

. . .
. . . bn

0 −s

 .

4 EZRA FURTADO-TIWARI

Now note that if for some set S, we have∑
x∈S

bx = s,

then the sum of the corresponding row vectors vx will produce the vector

x = (x1, x2, . . . , xn, 0),

where the xi are the binary digits of the message m we wish to decode. A distinguishing
characteristic of such a vector x is that we expect its magnitude to be very small, considering
that it only contains 1s and 0s, and the bi are assumed to be large to prevent other attacks.
In many cases, this vector x will indeed be the shortest possible nonzero vector that is
contained in L.

There is no known polynomial time algorithm to solve the shortest vector problem de-
scribed above, but there exist algorithms to solve a related problem, that of computing a
reduced basis for a lattice.

Definition 3.4. Let L be an integer lattice. A reduced basis of L is a set of linearly
independent basis vectors vn such that

|v1|2 < 2n−1 min
x∈L,x ̸=0

|x|2.

Lagarias and Odlyzko proved in [LO85] that for almost all integer lattices L formed using
the procedure described above, there exists some v ∈ L such that if e is the shortest vector
in L and

∑
ei ≤ n

2
,

vi = λei
for all i.

The final ingredient in our attack is the LLL algorithm, which we will state without proof.
Details about this algorithm are provided in [LLL82].

Theorem 3.5 (Lenstra–Lenstra–Lovász Algorithm). Given an integer lattice V, there exists
a polynomial time algorithm to compute a reduced basis for it.

Finally, we can define the low-density attack in entirety.

Proof of Theorem 3.2. We can use the following procedure, called the low-density attack, to
solve the knapsack problem in polynomial time in “almost all” cases if d < 0.65:

(1) Let {bn} be the public key and let s be the given sum.
(2) Construct a lattice L from {bn} and s as in (3.1).
(3) Compute a reduced basis U of L using the LLL algorithm.
(4) For each vector u ∈ U, check for all i if ui = λ or ui = 0. For each u satisfying this

condition, compute the vector λ−1u, and check if this vector yields a solution to the
subset sum problem.

(5) If no solution is found, repeat the procedure with s′ =
∑n

i=1 bi − s. This ensures that∑
ei <

n
2
. If that fails, then halt without returning a solution.

■

Due to the procedure by which both the single-round and iterative knapsack cryptosystem
are constructed, the knapsack problems created by these procedures almost always have low
density, so the low-density attack renders all formulations of the Merkle-Hellman cryptosys-
tem insecure.

THE KNAPSACK CRYPTOSYSTEM 5

4. The Chor-Rivest Cryptosystem

The Chor-Rivest cryptosystem works with higher density subset sum problems and is thus
more robust against the low density attack.

Definition 4.1 (Chor-Rivest Cryptosystem). The Chor-Rivest cryptosystem relies on the
subset sum problem but works with high density problems. It works as follows:

(1) Let ph be a prime power such that ph − 1 is B smooth for some small B (and thus it
is easy to compute discrete logarithms in Fph).

(2) Let f(x) be an irreducible monic polynomial over Fp with degree h. Note that we can
represent Fph as Fp[x]/f(x).

(3) Let t be the residue class corresponding to x (mod f(x)). Then t is an element of
Fph and f(t) = 0.

(4) Pick a generator g of (Fp)
×.

(5) For b ∈ Fp, let ab be an integer satisfying

gab ≡ b+ t (mod p).

(6) Construct an injection π : {0, . . . , p− 1} → Fp. Choose a non-negative integer d < p,
and define a sequence ci of length p such that

ci ≡ aπ(i) + d (mod ph − 1).

(7) To encode a message, first transform the message into a p-vector (m1, . . . ,mp−1) such
that

p−1∑
i=0

mi = h.

Then send the message

s =

p−1∑
i=0

mici.

(8) To decrypt a message, compute

r = s− dh (mod ph − 1).

We can write

gr =

p−1∏
i=0

gmiaπ(i) ,

which by definition of a is equal to

p−1∏
i=0

(t+ π(i))mi .

We may also represent gr as a polynomial G in x with degree < h, which gives us

G+ f(x) =

p−1∏
i=0

(t+ π(i))mi .

We can factor G+ f(x) efficiently to recover the message.

6 EZRA FURTADO-TIWARI

Rivest and Chor concluded experimentally that instances of the Chor-Rivest cryptosystem
generally have density > 1, rendering the low-density attack unsuccessful. However, more
efficient algorithms for solving the subset sum problem have been proposed and can break
this cryptosystem as well [IKKS07].

References

[IKKS07] Tetsuya Izu, Jun Kogure, Takeshi Koshiba, and Takeshi Shimoyama. Low-density attack revisited.
Designs, Codes and Cryptography, 43:47–59, 04 2007.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and Lovász László. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261, 12 1982.

[LO85] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. J. ACM,
32(1):229–246, jan 1985.

[MH78] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE
Transactions on Information Theory, 24(5):525–530, 1978.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking the basic merkle-hellman cryptosystem. In
23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pages 145–152, 1982.

	1. The Knapsack Cryptosystem
	2. Shamir's Attack
	3. More Powerful Attacks
	4. The Chor-Rivest Cryptosystem
	References

