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1. Introduction

Definition 1.1. A Mersenne number is a number of the form 2n − 1, where n is a positive
number. We write the n-th Mersenne number as Mn.

Definition 1.2. A Mersenne prime is a prime Mersenne number.

For example, the first four Mersenne primes are 3, 7, 31, and 127. These are M2,M3,M5,
and M7. You might notice these are the first four primes. That isn’t exactly a coincidence,
because if n is composite, then there is a simple factorization of Mn. Suppose n = ab, where
a, b > 0. Then

2n − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 2a + 1).

So we will only concern ourselves with the numbers Mp, where p is prime. (Note that p being
prime is not enough, since (for example) 211 − 1 = 2047 = 23 · 89 is composite.)

The top five largest known primes are all Mersenne primes. In fact, the largest known
non-Mersenne prime has 11981518 digits - less than half as many as the largest known prime,
282589933 − 1, which has 24862048 digits. This is because there is a very fast primality test
for Mersenne numbers, called the Lucas-Lehmer test.

2. The Lucas-Lehmer Test

Theorem 2.1 (Lucas-Lehmer test). Let s0 = 4. For n > 0, let sn = s2n−1 − 2. Then Mp is
prime if and only if Mp | sp−2.

Proof. First, we prove a closed form for si. Let ω = 2 +
√
3 and ω = 2−

√
3, and note that

ωω = 1. We claim that si = w2i +w2i . First, notice that ω20 +ω20 = (2+
√
3)+ (2−

√
3) =

4 = s0 as desired. Next, we check that this claimed form satisfies the recurrence relation for
si. Indeed,

(ω2n−1

+ ω2n−1

)2 − 2 = ω2n + ω2n + 2(ωω)2
n−1 − 2 = ω2n + ω2n

as desired.
Next, we prove the “if” direction. This proof is due to [1]. Suppose that Mp | sp2 . Then

we write

ω2p−2

+ ω2p−2

= kMp

for some integer k. Multiplying both sides by ω2p−2
gives

ω2p−1

+ 1 = kMpω
2p−2

1
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or

ω2p−1

= kMpω
2p−2 − 1(2.1)

and, squaring,

ω2p = (kMpω
2p−2 − 1)2(2.2)

Now suppose for the sake of contradiction that Mp is composite. Choose a factor q ≤
√
Mp

of Mp, and note that q is odd. Let X denote the set {a+ b
√
3 : a, b ∈ Z/qZ}. Addition and

multiplication are defined on X in the obvious way. We can think of ω, ω as elements of X,
since q > 2. Clearly X is closed and thus forms a group under either of these operations.
Let X∗ denote the the group of invertible elements of X with respect to multiplication. Note
that X contains at least one non-invertible element, namely 0, so |X∗| ≤ |X| − 1 = q2 − 1.

Now, observe that since q | Mp, kMpω
2p−2

is 0 as an element of X. Thus equations (2.1)
and (2.2) give us that

ω2p−1

= −1

ω2p = 1

in X. Equation (2.4) implies that ω is invertible with inverse ω2p−1, so ω ∈ X∗. Furthermore,
the order of ω divides 2p but not 2p−1, so the order of ω is 2p. Since the order of ω is at most
|X∗|,

2p ≤ q2 − 1.

But q2 ≤ 2p − 1, so

2p ≤ q2 − 1 ≤ 2p − 2

which is absurd. This completes the proof of the “if” direction.

Now we prove the “only if” direction. This proof is due to [2]. Suppose Mp is prime. Set

τ = 1+
√
3√

2
, and τ = 1−

√
3√

2
. Note that τ 2 = ω, τ 2 = ω, and ττ = −1. Now we have

τMp2
Mp−1

2

√
2 = (

√
2τ)Mp = (1 +

√
3)Mp ≡ 1 +

√
3
Mp

= 1 + 3
Mp−1

2

√
3 (mod Mp).

Note that Mp ≡ 7 (mod 8), so (2/Mp) = 1, and Mp ≡ 7 (mod 12), so (3/Mp) = −1, by

well-known properties of the Legendre symbol. Thus 2
Mp−1

2 ≡ 1 and 3
Mp−1

2 ≡ −1 (mod Mp).
Substituting this in, we see that

τMp
√
2 ≡ 1−

√
3 (mod Mp)

so τMp ≡ τ (mod Mp) and thus τMp+1 ≡ −1 (mod Mp). We can also write this as τ 2
p
+ 1

(mod Mp), or, using the fact that τ 2 = ω,

ω2p−1

+ 1 (mod Mp).

Multiplying both sides by ω2p−2
gives

ω2p−2

+ ω2p−2 ≡ 0 (mod Mp)

as desired. ■
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When implemented correctly, the most expensive part of the Lucas-Lehmer test is perform-
ing the O(p) multiplications, which can each be done in O(p1+ε) with the Schönhage–Strassen
algorithm. So the time complexity of the Lucas-Lehmer test is O(p2+ε).

3. Jacobi Error Checking

Random hardware issues can lead to computation errors when running a Lucas-Lehmer
test. To totally ensure accuracy, Lucas-Lehmer tests need to be double checked, with the
final residue compared between both tests to see if it matches. However, there is a way to
improve the accuracy of Lucas-Lehmer tests on unreliable hardware.

Theorem 3.1 (Jacobi error check). Let i be any positive integer and p be an odd prime.
Then (

si + 2

Mp

)
= +1(3.1) (

si − 2

Mp

)
= −1.(3.2)

Proof. Recall that si = s2i−1 − 2. So si + 2 = s2i−1 must be a square, proving (3.1). Equation

(3.3) requires induction. Note that for i = 0,
(

si−2
Mp

)
=

(
2

Mp

)
= 1 since Mp ≡ 7 (mod 8).

This is the base case. Now we induct. Suppose
(

si−2
Mp

)
= −1. Then(

si+1 − 2

Mp

)
=

(
s2i−1 − 4

Mp

)
=

(
(si − 2)(si + 2)

Mp

)
=

(
si − 2

Mp

)(
si + 2

Mp

)
= 1(−1) = −1.

This completes the inductive step and the proof. ■

What makes Jacobi error checking useful is that it doesn’t need to be performed on every

iteration (which would be too expensive) - if a hardware error causes both
(

si+2
Mp

)
and

(
si−2
Mp

)
to be +1, then they will be +1 on each future iteration as well. So it’s enough to only perform
a Jacobi check every several thousand iterations or so.

4. Modern Mersenne Prime Testing

Although the Lucas-Lehmer test is very fast, it is no longer the main test used by the
Great Internet Mersenne Prime Search (GIMPS), a distributed computing project searching
for Mersenne primes. Instead, GIMPS tests numbers by running a single Fermat probable
prime test (PRP), which simply verifies for one a that aMp−1 ≡ 1 (mod Mp), as would be
guaranteed by Fermat’s Little Theorem if Mp were prime. Large numbers are unlikely to
be Fermat pseudoprimes, making a false positive unlikely. Now, PRP tests aren’t any faster
than LL, also having a time complexity of O(p2+ε), but they are preferred because of Gerbicz
error checking, a technique for Fermat probable prime tests that nearly guarantees a correct
result. Still, Lucas-Lehmer remains necessary for verifying any pseudoprimes found by PRP
tests.
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