
Benjamin Dahmen-Hwang
Simon Rubenstein-Salzedo
Euler Circle 2024
19 August 2024
Paper on Cryptographic Hash Functions

1 Introduction

Cryptographic hash functions are a way of condensing a large body of data
into a much shorter string. The output of a cryptographic hash function
is usually a base 256 string whose characters appear to have little to no
resemblance to the original string. There is usually not a one-to-one corre-
spondence between the original data and the hash function’s output, so the
hash function cannot be used to reproduce the original string; however, a
good cryptographic hash function will make it challenging for one to find
two different strings that correspond to the same hash.

2 Cryptographic hash function properties:

A good cryptographic hash function will have the following properties:
The cryptographic hash function should produce fairly short output, regard-
less of the length of the input string. Depending on the application, this
could be anywhere between 8 characters for emails and passwords to several
hundred characters for longer bodies of text. It generally should have a fixed
length less than a certain value, and it should not take up much space when
stored. This makes it hard to find the length of the original string based
on the hash function, and it also allows the cryptographic hash to be stored
without taking up much data.
It should be hard to find two different strings that produce the same hash.
This means that it should be challenging to find two strings such that
h(s1) = h(s2). In some cases, this would make it significantly more diffi-
cult for Eve to find a message she could send without Bob being able to
detect it came from Eve.
One small change in the string should produce a significant change in the
cryptographic hash. When hashes are being used for data integrity and se-
curity purposes, if the cryptographic hash function does not significantly

1



change when the string slightly changes, a data change between transmis-
sion and reception (either by Eve or because of signal interference) may go
undetected. Furthermore, if the hash function is being used to represent a
password, someone could enter in a wrong password that contains reasonable
similarity with the correct one and still be granted login access.
The cryptographic hash function should not change in predictable ways. It
should not preserve any arithmetic operation, whether addition or multipli-
cation (for instance, h(2e) should not be equal to 2h(e)). If the cryptographic
hash function did change predictably, the cryptographic hash function would
become insecure due to chosen ciphertext attacks, which would give a hacker
a much better chance of being able to correlate a password with the given
hash value.
Given the hash value, it is very hard to gather any useful information about
the characters in the input string. If this was not the case and the crypto-
graphic hash represented a password, information could be gained about the
password just by looking at the hash, and this is often undesirable. Further-
more, if Eve could somehow gather information about the hash value of a
message, she could get clues about the original message, which would not be
good. Even though this is likely to be the case if the first four requirements
were met, it is still important to keep in mind when designing cryptographic
hash functions.
Lastly, the algorithm should be fairly efficient. Hashes will often have to be
computed hundreds to thousands of times in a program, and an inefficient
hash function could slow a program down.

3 Utilizing hash functions for data integrity

and authentication.

As mentioned earlier, cryptographic hash functions have major applications
in data integrity, safely storing passwords, and even signing messages. Since
one small change in the message should result in a different cryptographic
hash function, to verify that data was transmitted correctly, one could send
both the cryptographic hash value and the actual message over the channel;
this way, if the message was altered in the process for any reason, the received
message’s hash value would not be equal to the sent hash value. One poten-

2



tial issue with this is that if Eve could change the data being sent before it
reached its destination, she could edit the message and change the crypto-
graphic hash value to match the new message. However, there is a relatively
simple solution to this problem; use a cryptographic hash function that is
constantly changing with every message sent, and then use a Diffie-Hellman
key exchange to establish the numbers used to generate the cryptographic
hash function.
First, Alice and Bob should establish a number that is to be used to generate
their cryptographic hash function. One way of doing this is a Diffie-Hellman
key exchange; Alice’s and Bob’s private key can be random numbers, and
the key that they establish would become the number used to generate the
cryptographic hash function. It is very common in practice to encode crypto-
graphic hash functions with a key. Now, when Alice wants to send a message
to Bob, she first computes h(m, k), where k is the key, and m is the message.
Then, she sends this information publicly. Eve can change this value, but
because she does not know what k is, she cannot compute the cryptographic
hash value of the message she intends to send. Thus, when Alice sends the
message, Bob can tell if Eve manipulated it, as the cryptographic hash value
sent through the channel would not match up with the cryptographic hash
value of the encrypted message. Since Eve cannot compute the cryptographic
hash value of the message she changed, the best thing she could do would be
to randomly change the cryptographic hash value that Alice sent and hope
it matches up; however, if the cryptographic hash value is sufficiently large,
this is impractical. Even if Eve knew what the message was, she still could
not find k, because finding k given m and h(m, k) should be just as hard as
finding m given h(m, k) and k. This is an example of how cryptographic hash
functions (combined with the Diffie-Hellman key exchange) can be useful to
authenticate data in a more efficient way than the encrypt-then-sign method.

4 Methods of hash function computation

Most of the time, a cryptographic hash function should have as little sym-
metry as possible, while still being quick to compute. A good way to do
this is by using a key in combinations with polynomials. First, write the
cryptographic hash input value in base 256 for ANSI text (this is equivalent
to converting it back into its text state). Then, compute the following:

3



h(m, k) = (
n∑

i=0
mik

i)(mod p)

In this formula, mi is the value of the ith digit, m is the message, k is the
key, n is the length of the base 256 string of m, and p is the modulus. The
value of p should be chosen based on the desired output length of the hash
function; for some length l, because of the fact that a character of text can
be represented in 8 bits, the maximum value of p such that the key length is
less than or equal to l is 28l.
There exists other methods for computing hash functions, such as MD5 or
SHA-256, which operate using several rounds of data splitting (breaking the
string into pieces), doing several bitwise, shifting and substitution proce-
dures, and repeating the process many times; however the method shown
above is by far the simplest. It is challenging to find a cryptographic pro-
cedure that satisfies all the requirements for cryptographic hash functions,
and even algorithms like MD5 that were once used are now insecure. This is
an interesting problem in cryptography, one that is very important for data
security.

5 Using hash functions for email and pass-

word hiding

Cryptographic hash functions are also useful for storing passwords in a se-
cure manner. Let’s consider that you want to store your password, but you
don’t want anyone on the server side to know what your password is. One
solution to this problem is to store the password as a cryptographic hash
value instead. If the hash function has all of the previously discussed prop-
erties, it would be very hard for an attacker to gain any information about
the user’s password given the cryptographic hash value; thus, a hacker could
view the hash values of a password and still not be able to gain much in-
formation about the password itself. When a user logs in, the email and
password should be POSTed together in an encrypted form to the server. It
would not be a good idea to send the cryptographic hash value of each string
to the server instead, since if this was done, the person that had access to
the cryptographic hash values in the database could send those values to the
server instead, bypassing the need to know the email and password to log in.
Once the server receives the email and password, the server should decrypt

4



them and convert each string to a cryptographic hash value. Next, it should
look for matches of those values with values in the database. If the email
hash value matches up with an email hash value in one of the rows of the
database, then the program should check to see if the password hashes match
up. If the passwords do not match up, then the server should send a message
to the client indicating that his/her password was incorrect. Similarly, if the
entire list is scanned and no email matches are found, a message should be
sent indicating that the account does not exist.

6 Mistaken identity

There is one potential caveat with this method, however. Let’s consider that
a server stores 50 million emails as hash values. Most likely, each hash value
will be distinct; however, there is a chance that two emails could correspond
to the same hash value, since a cryptographic hash function is not bijective.
If a user tries to create an account, and the email’s hash matches an email
hash value in the database (despite the original emails not being the same!)
the user may not be able to create an account since the server mistakes the
emails as being the same. This can cause a user to not be able to create an
account, and even if they were allowed to create an account, an ambiguity
would be created in the server’s database, possibly leading to errors and even
allowing a user to log into the wrong account.
There are a couple of ways to reduce the probability of this issue. Firstly, one
could store the first few characters of every email before the cryptographic
hash value; this would allow the server to verify, with increased reliability,
whether an email has already been taken, and it would also reduce the odds
of any ambiguities. The first few characters of an email will not be that
helpful to anyone trying to hack into the system, as they would still have
insufficient information to find the actual email used to log in. Storing the
first few characters of an email could also be useful for forms, in situations
where the user has to select an email to use; showing only the first few char-
acters allows verification that they are submitting the form under the desired
account, without revealing too much valuable information to a hacker. This
is much more convenient than having the user manually type out their email
every time they want to submit a form, since typos and having another field
to fill out can slow down a user significantly.

5



Another possible method to reduce the probability of mistaken identity would
be to increase the length of the output of the hash function; this would in-
crease the number of possible outputs of the hash function, decreasing the
probability of an error due to loss of information. Even if the cryptographic
hash function’s output is only 8 characters long, the probability of such an
event randomly occuring is approximately is extremely rare, with a 1 in a
quadrillion probability; for this reason, it is usually not a major concern for
programmers, and thanks to the hard-to-find-matches property of crypto-
graphic hash functions, it would be hard for a hacker to lock a user out by
registering an account whose email hashed to the same value as the user’s
email, due to the difficulty of finding such an email. Furthermore, a valid
email has a specific pattern to it, one that can be verified to be satisfied
quickly with regular expressions; a cryptographic hash function’s pair solu-
tion would most likely not be of any use, since it most likely would not have
the format of an email address.
Not only can two emails hash to the same value, but two passwords can hash
to the same value as well (in fact, for every password, there are infinite hash
matches). At first glance, this may appear to be a major problem, because
having multiple passwords for your account should make it easier for a hacker
to find the right combination and be granted access. However, the passwords
that hash to the same value as your password will have a lot less patterns,
will be of the same length, if not longer, and will likely contain characters
(such as control characters) that a website could easily search for and invali-
date requests made with such characters. Similar to email addresses, despite
seeming to be problematic at first glance, cryptographic hash functions work
well with passwords, and their loss of information is not much of a problem
at all.

7 How you can see use of hash functions as

you go about your daily life

Due to the irretrivability of an email from its hash, some forms will ask for
information that you wouldn’t think you’d need to give. For example, in a
password reset form, you will often be asked to enter in your email. One may
think that this was a security feature, but they actually have to do this, be-

6



cause the company doesn’t actually know what your email is! Instead, they
need the hash value to correlate the email with a password, and the only way
to figure out which hash value corresponds to your email is for you to give
them your email information. This is an example of how you can see the use
of cryptographic hash functions without directly interacting with any code!

8 Conclusion

Overall, cryptographic hash functions are very useful in cryptography for a
variety of reasons. They can be used to verify a message transmitted cor-
rectly, and with the help of a Diffie-Hellman key exchange, they can also
be used for data authentication. To prevent emails and passwords from
being visible to people with access to a company database, cryptographic
hash functions can be used to translate emails and passwords into a form
that cannot be easily traced back to the original text, but it still can be
used to verify whether a given email or password is equivalent to a value
in the database (for purposes of logging in and verifying whether a person
has already signed up). The five properties that allow cryptographic hash
functions to function so well in the aforementioned applications are its short
length, the challenge of finding multiple strings corresponding to the same
hash, its ability to make one small change in the text noticeable, its asymme-
try, and its lack of direct correlation with the input string. Generally, since
high-order polynomials modulo n fit these properties quite well, it is not
uncommon for cryptographic hash functions to utilize polynomials and keys
for their translation of data. With their relative simplicity and wide variety
of applications, cryptographic hash functions have massive importance and
usefulness in cryptography.

7


