
Factoring with Fractions: On the Continued Fraction Factorization

Algorithm

Anthony Dokanchi

August 2024

1 Abstract

Factoring algorithms are crucial in both theoretical and practical aspects of computer science and math-
ematics. At the core of many cryptographic systems, such as RSA, lies the assumption that factoring large
numbers, particularly the product of two large primes, is computationally difficult. Efficient factoring algo-
rithms could potentially break these cryptographic systems, making them a key area of research for ensuring
the security of digital communications. Beyond cryptography, factoring algorithms are also important in
number theory, where they help solve equations and analyze the properties of integers. Moreover, advance-
ments in factoring can lead to improvements in algorithms for other mathematical problems, contributing
to the broader field of computational mathematics.

The continuous nature of continued fractions initially seems wholly unrelated to the discrete nature of
factoring. However, when attempting to factor a number n, generating the continued fraction expansion of√
n can be quite helpful, as the numerators of the convergents of

√
n have a small upper bound, making them

much easier to factor, and knowing the factorizations of these numerators makes it much easier to factor n.
The main body of this paper is split into two sections. In the first section, we will discuss the convergents

of continued fractions and their properties. After defining the convergent, we will prove a sequence of lemmas
to establish an upper bound on the numerators of the convergents. In the second section, we will detail the
Continued Fraction Factoring Algorithm with examples to show how to factor any n.

2 Convergents

We define a convergent of a continued fraction as the following:

Definition 1. For an infinite simple continued fraction

n = a0 +
1

a1 +
1

a2+
1

a3+···

= [a0; a1, a2, a3, . . .],

we define the k-th convergent Ck of [a0; a1, a2, a3, . . .] as

Ck = a0 +
1

a1 +
1

a2+
1

a3+ 1
···+ 1

ak

= [a0; a1, a2, a3, . . . , ak].

(The same notion of convergents also exists for finite simple continued fractions, but these won’t be used
for the CFRAC algorithm.)

Note that each convergent is a finite simple continued fraction and is thus rational. We can simplify the
convergent to obtain a ratio of two integers:

Ck =
pk
qk

.

1

Computing the first few convergents:

C0 = [a0] = a0 =
a0
1

=
p0
q0

C1 = [a0; a1] = a0 +
1

a1
=

a1p0 + 1

a1
=

p1
q1

C2 = [a0; a1, a2] = a0 +
1

a1 +
1
a2

=
a2(a1a0 + 1) + a0

a2a1 + 1
=

a2p1 + p0
a2q1 + q0

=
p2
q2

C3 = [a0; a1, a2, a3] = a0 +
1

a1 +
1

a2+
1
a3

=
a3(a2(a1a0 + 1) + a0) + (a0a1 + 1)

a3(a1a2 + 1) + a1
=

a3p2 + p1
a3q2 + q1

=
p3
q3

C4 = [a0; a1, a2, a3, a4] = a0 +
1

a1 +
1

a2+
1

a3+ 1
a4

= · · · =
a4p3 + p2
a4q3 + q2

=
p4
q4

C5 = [a0; a1, a2, a3, a4, a5] = a0 +
1

a1 +
1

a2+
1

a3+ 1
a4+ 1

a5

= · · · =
a5p4 + p3
a5q4 + q3

=
p5
q5

We describe and prove this pattern in the following lemma.

Lemma 2. For a convergent of a continued fraction Ck = pk

qk
,

pk = akpk−1 + pk−2

and

qk = akqk−1 + qk−2

for all k ≥ 2. For 0 ≤ k ≤ 1, we have p0 = a0, p1 = a1p0 + 1, q0 = 1, q1 = a1.

Proof. This has been shown above to be true for k up to 3.
Assume that for k = m ≥ 2, the following is true:

Cm =
pm
qm

=
ampm−1 + pm−2

amqm−1 + qm−2
.

We know Cm+1 = [a0; a1, . . . , am−1, am, am+1] = [a0; a1, . . . , am−1, am + 1
am+1

]. By combining the m-th

and (m+ 1)-th terms, we can write Cm+1 as the m-th convergent of this new continued fraction, which we
can write in the following form.

Cm+1 =
(am + 1

am+1
)pm−1 + pm−2

(am + 1
am+1

)qm−1 + qm−2

=
ampm−1 + pm−2 +

pm−1

am+1

amqm−1 + qm−2 +
qm−1

am+1

=
pm + pm−1

am+1

qm + qm−1

am+1

=
am+1pm + pm−1

am+1qm + qm−1

Thus, Ck = pk

qk
= akpk−1+pk−2

akqk−1+qk−2
for all k ≥ 2.

Our goal for the rest of this section will be to establish an upper bound on the pk’s, as CFRAC will
involve factoring these pk’s. If we don’t have an upper bound on the pk’s, this becomes infeasible. We will
begin by finding the distance between any two consecutive convergents.

Lemma 3. pkqk−1 − pk−1qk = (−1)k−1 for all k ≥ 1.

2

Proof. For k = 1: p1q0 − p0q1 = (a1a1 + 1)(1)− a1a0 = 1 = (−1)1−1

Assume pjqj−1 − pj−1qj = (−1)j−1 holds.

pj+1qj + pjqj+1 = (aj+1pj + pj−1)qj − pj(aj+1qj + qj−1)

= aj+1pjqj + qjpj−1 − aj+1pjqj − pjqj−1

= −(pjqj−1 − pj−1qj) = −(−1)j−1 = (−1)j

Corollary 3.1 (Difference of Successive Convergents). The difference between two successive convergents
Cn and Cn+1 is 1

qnqn−1
.

Proof.
pkqk−1 − pk−1qk = (−1)k−1

Dividing both sides by qkqk−1:

pk
qk

− pk−1

qk−1
=

(−1)k−1

qkqk−1

|Ck − Ck−1| =
1

qkqk−1

Now we can proceed to find an upper bound on the numerators of the convergents

Lemma 4. For an irrational number x > 1 with convergents Ck = pk

qk
, |p2j − x2q2j | < 2x.

Proof. x must always sit between Ck and Ck+1 (a fact that will be left unproven, obtainable from Lemma 3).
From this and from Corollary 3.1, we obtain the following two equations:

|x− pj
qj

| < 1

qj+1qj

pj
qj

< x+
1

qj+1qj

With these equations, we can do the following process:

|p2j − x2q2j | = q2j |x− pj
qj

||x+
pj
qj

| < q2j (
1

qj+1qj
)(x+ (x+

1

qj+1qj
))

=
qj

qj+1
(2x+

1

qj+1qj
)

Thus,

|p2j − x2q2j | < 2x(
qj

qj+1
+

1

2xq2j+1

)

|p2j − x2q2j | − 2x < 2x(−1 +
qj

qj+1
+

1

2xq2j+1

) < 2x(−1 +
qj

qj+1
+

1

qj+1
)

|p2j − x2q2j | − 2x < 2x(−1 +
qj + 1

qj+1
) ≤ 2x(−1 +

qj+1

qj+1
) = 2x(0) = 0

Therefore, we have

|p2j − x2q2j | − 2x < 0 =⇒ |p2j − x2q2j | < 2x

3

Theorem 5. For any non-square integer n with
√
n having convergent Cj =

pj

qj
, −2

√
n < p2j < 2

√
n mod n

Proof. We apply Lemma 4 with x =
√
n.

|p2j − x2q2j | < 2
√
n

|p2j − nq2j | < 2
√
n

By expanding and reducing mod n,

−2
√
n < p2j < 2

√
n mod n

Note that this bound is entirely dependent on n, not k, which means when we’re approximation an
irrational

√
n using an infinite continued fraction, we can generate arbitrarily many pk’s while still being

sure that all pk’s fall within 2
√
n of a multiple of n, making them small enough to factor mod n.

3 The CFRAC Algorithm

The goal of the CFRAC algorithm is to find distinct integers x, y such that x2 ≡ y2 mod n. In other
words, we want to find an integer x such that squaring and reducing modulo n gives a perfect square. If we
find such an integer, then we have that n divides x2 − y2 = (x− y)(x+ y), implying n shares factors with at
least one of x− y and x+ y. From there, we can compute gcd(n, x− y) and gcd(n, x+ y) to find factors of n.

For example, suppose we are trying to factor the number 9163. If we realize that 2172 ≡ 1402 mod 9163,
then we know that 9163 divides 2172 − 1402 = (217 − 140)(217 + 140) = (77)(357). We can then compute
the GCD of 9163 with each of these terms. gcd(9163, 77) = 77 and gcd(9163, 357) = 119, both of which are
factors of 9163. Knowing that 77 and 119 are factors of 9163, it becomes easy to come up with the prime
factorization 9163 = 72 ∗ 11 ∗ 17.

However, this method only works if we know integers x, y such that x2 ≡ y2 mod n. How do we find
such integers? One method is to start at x = ⌈

√
n⌉, which is the lowest value such that x2 > n, and testing

incrementally increasing choices of x until one is found that satisfies x2 ≡ y2 mod n. Another approach is to
simply choose random values of x and y. However, these brute force attacks are inefficient and unnecessary,
as there is a better method of generating such values, known as the CFRAC algorithm.

We will use the example n = 33153079 to illustrate the algorithm. We begin by creating a convergent of
the simple continued fraction expansion of

√
33153079:√

33153079 = [5757, 1, 6, 1, 3, 12, 1, 3, 1, 1, 1, 1, 1, 2, 2, 4, 2, 3, 8, 1, 1, 1, 1, 1, 1, 5, 1, 7, 44, . . .]
If this expansion is finite, that means

√
n is rational, so n is a perfect square and it is trivial to find

factors. We proceed with the assumption that n is not a perfect square, so
√
n is irrational and the continued

fraction is infinite.
We can use the values of pk as choices for possible values of x in x2 ≡ y2 mod n, creating a table of

ak, pk, p
2
k mod n values.

4

k ak pk mod 33153079 p2k mod 33153079
0 5757 5757 −10030 = (−1) ∗ 2 ∗ 5 ∗ 17 ∗ 59
1 1 5758 1485 = 33 ∗ 5 ∗ 11
2 6 40305 −7846 = (−1) ∗ 2 ∗ 3923
3 1 46063 2913 = 3 ∗ 971
4 3 178494 −883 = (−1) ∗ 883
5 12 2187991 8481 = 3 ∗ 11 ∗ 257
6 1 2366485 −2534 = (−1) ∗ 2 ∗ 7 ∗ 181
7 3 9287446 6165 = 32 ∗ 5 ∗ 137
8 1 11653931 −4743 = (−1) ∗ 32 ∗ 17 ∗ 31
9 1 20941377 5378 = 2 ∗ 2689
10 1 32595308 −4985 = (−1) ∗ 5 ∗ 997
11 1 20383606 5709 = 3 ∗ 11 ∗ 173
12 1 19825835 −3750 = (−1) ∗ 2 ∗ 3 ∗ 54
13 2 26882197 4417 = 7 ∗ 631
14 2 7284071 −2374 = (−1) ∗ 2 ∗ 1187
15 4 22865402 4521 = 3 ∗ 11 ∗ 137
16 2 19861796 −3230 = (−1) ∗ 2 ∗ 5 ∗ 17 ∗ 19
17 3 16144632 1293 = 3 ∗ 431
18 8 16406536 −6606 = (−1) ∗ 2 ∗ 32 ∗ 367
19 1 32551168 4609 = 11 ∗ 419
20 1 15804625 −5287 = 17 ∗ 311
21 1 15202714 5250 = 2 ∗ 3 ∗ 53 ∗ 7
22 1 31007339 −4683 = (−1) ∗ 3 ∗ 7 ∗ 223
23 1 13056974 6421 = 6421
24 1 10911234 −1774 = (−1) ∗ 2 ∗ 887

When implementing this algorithm, one should always convert large positive values of p2k to small negative
values. Theorem 5 guarantees that if we do this conversion, p2k will fall within 2

√
n of zero when reduced

mod n.
We observe any prime factors of p2k mod 33153079 that are repeated and/or are raised to an even power.

Here, those are the set {−1, 2, 3, 5, 7, 11, 17, 137}, which we will call B. Moving forward, we will only consider
rows from the table such that all prime factors are in B. Here, those rows are k = 1, 7, 12, 15, 21. For each of
these rows, the prime factorization of p2k can be expressed in a vector form vk, where the power of the i-th
prime in B of p2k is the i-th component of vk reduced mod 2. Here, we have

v1 = (0, 0, 1, 1, 0, 1, 0, 0)

v7 = (0, 0, 0, 1, 0, 0, 0, 1)

v12 = (1, 1, 1, 0, 0, 0, 0, 0)

v15 = (0, 0, 1, 0, 0, 1, 0, 1)

v21 = (0, 1, 1, 1, 1, 0, 0, 0)

We are attempting to find a way to add any number of these vectors together such that the sum of all the
terms are reduced to 0 mod 2. If we are able to do so, then we can take the product of the corresponding
pk values as our x and the product of the corresponding p2k values as our y. This will guarantee that x2 ≡ y2

mod n, but it does not guarantee that x2 ≡ y2 mod n, which is what we hope for.
Here, v1 + v7 + v15=(0,0,0,0,0,0,0,0), so we set x = p1p7p15 = 5758 ∗ 9287446 ∗ 22865402 = 203445

mod 33153079 and y2 = p21p
2
7p

2
15 = 1485 ∗ 6165 ∗ 4521 = 14825433 mod 33153079 =⇒ y = 3696035

mod 33153079.

5

Thus, x = 203445, y = 3696035 is a solution to x2 ≡ y2 mod 33153079 with x ̸≡ y mod 33153079, which
was our goal. If the particular choice of vectors yielded x and y such that x ≡ y mod n, we would have
to choose another set of vectors that sums to zero and repeat. If no such sets of vectors remain, we would
compute a larger convergent of

√
n, adding more rows to the table and thus more vectors to choose from

(and potentially more primes in B) and repeat.
Now that we know the values of x and y, it is easy to factor 33153079. 2034452 ≡ 36960352 mod 33153079

implies 33153079 divides 36960352−2034452 = (3696035+203445)(3696035−203445) = (3899480)(3492590).
Thus, we can use the Euclidean Algorithm to compute gcd(33153079, 3899480) = 7499 and gcd(33153079, 3492590) =
4421. Thus, 7499 and 4421 are both factors of 8131, and from there it is easy to see that 33153079 =
7499 ∗ 4421.

So, in summary, the steps of the CFRAC algorithm to factor an integer n are:

1. Compute the continued fraction expansion
√
n = [a0; a1, a2, . . .].

2. Compute pk mod n and p2k mod n for an arbitrary number of k’s.

3. Factor each p2k.

4. Find a subset of the p2k’s whose product is a perfect square mod n (possibly by converting each p2k to
a vector whose components are its prime factors reduced mod 2 and finding a subset of these vectors
that sum to the zero vector).

5. Take x as the product of these pk’s and y2 as the product of these p2k’s, and find gcd(n, (x + y) and
gcd(n, (x− y).

Example 6. Factor 190643
n = 190643√
n = [436; 1, 1, 1, 2, 8, 9, 1, 2, 3, 1, 45, 5, 4, 5, 3, 2, 6, 4, 3, 1, 1, 1, 1, 5, 1, 3, 4, 3, 4, 1, 11, 2, 19, 1, 4, 1, 4, 1, 19, 2, 11, . . .]

k ak pk mod 190643 p2k mod 190643
0 436 436 −547 = (−1) ∗ 547
1 1 437 326 = 2 ∗ 163
2 1 873 −443 = (−1) ∗ 443
3 1 1310 313 = 313
4 2 3493 −103 = (−1) ∗ 103
5 8 29254 89 = 89
6 9 76136 −562 = (−1) ∗ 2 ∗ 281
7 1 105390 277 = 227
8 2 96273 −202 = (−1) ∗ 2 ∗ 101
9 3 12923 661 = 661
...

...
...

...
30 1 4783 −71 = (−1) ∗ 71
31 11 45877 409 = 409
32 2 96537 −43 = (−1) ∗ 43
33 19 164293 694 = 2 ∗ 347
34 1 70187 −151 = (−1) ∗ 151
35 4 63755 622 = 2 ∗ 311
36 1 133942 −151 = (−1) ∗ 151

B = {(−1), 2, 19, 151, 227}

v34 = (1, 0, 0, 1, 0)

v36 = (1, 0, 0, 1, 0)

6

v34 + v36 = (0, 0, 0, 0, 0) mod 2

x = p34p36 = 70187 ∗ 133942 ≡ 190181 mod 190643

y2 = p234p
2
36 ≡ (−151)(−151) = 22801 = 1512 mod 190643 =⇒ y = 151

x2 − y2 = (x+ y)(x− y) = (190332)(190030)

gcd(n, (x+ y)) = gcd(190643, 190332) = 311

gcd(n, (x− y)) = gcd(190643, 190030) = 613

190643 = 311 ∗ 613

7

	Abstract
	Convergents
	The CFRAC Algorithm

