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Abstract. The paper focuses on a cryptosystem devised by Guilhem Castagnos, which
involves quadratic field quotients modulo a RSA number, which are numbers with two
prime factors used in RSA encryption, and are often called semiprimes. The cryptosystem
is probablistic, and adapts the LUC encryption system (which makes use of Lucas sequences)
to quadratic fields modulo a semiprime.

1. Introduction

The paper will begin by introducing some basic terminology and tools from quadratic
number theory, such as the norm and trace of elements. Specifically, we will be studying the
ring of integers of the quadratic number field Q(

√
∆) modulo a number a coprime to ∆ We

heavily consider the multiplicative group of norm 1, denoted by (O∆/aO∆)
∗, and find the

size of its order.
Next, we describe the Lucas sequences U(P,Q) and V (P,Q) giving an efficient algorithm

that computes V (P, 1) similar to square and multiply used in ordinary exponentiation. The
paper will subsequently show two cryptosystems: the LUC cryptosystem and the Catalano,
Gennaro et al. cryptosystem. The first system uses the Lucas sequences V (P, 1) for encryp-
tion and decryption, along with quadratic number fields for its proof of correctness. The
second system is a probablistic variant of RSA that maps a message in Z/nZ to a ciphertext
in [Z/(n2)]×. The cryptosystem given by Castagnos combines both these cryptosystems.
Specifically, let n = pq ≡ 1 (mod 2). Suppose e is an integer prime to (p2 − 1)(q2 − 1), and
we have the following:

Λ′
n = {x ∈ Z, 0 ≤ x < n, gcd(x, n) = gcd(x2 − 4, n) = 1}(1.1)

Ωn = {x ∈ Z, 0 ≤ x < n2, gcd(x, n) = gcd(x2 − 4, n) = 1}
E ′
e : Z/nZ× Λ′

n → Ωn | (m, r) → (1 +mn)Ve(r) (mod n2)

where Ve(r) = Ve(r, 1) is a Lucas sequence. The paper’s claim is that this map forms a
bijection and makes a for a well-defined cryptosystem. To conclude, the paper provides an
encryption and decryption algorithm for the Castagnos cryptosystem.

2. Quadratic Number Fields

For a non-square ∆ ∈ Z, we define Q
[√

∆
]
as the field extension of Q adjoined by the

square root of ∆. The set of algebraic integers (algebraic numbers that are the roots of

monic polynomials with integer coefficients) in Q
[√

∆
]
can be written in the form

a+ b
√
∆,
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where a, b ∈ Z if ∆ ≡ 2, 3 (mod 4). If ∆ ≡ 1 (mod 4), then either a, b ∈ Z, or else

a + 1
2
, b + 1

2
∈ Z. We denote the ring of integers as O∆. If we denote δ =

√
∆, and

η = 1
2
(1 + δ), then it’s clear to see that the ring O∆ is isomorphic to either Z[δ] or Z[η].

For an integer a coprime to ∆, the quotient ring O∆/aO∆ is a free module of rank 2 over
Z/aZ (with basis elements equal to 1 and δ or 1 and η depending on ∆ modulo 4). If
α = a+ bδ ∈ O∆, we define norm and trace functions by:

N(α) = a2 −∆b2

Tr(α) = 2a.

It’s easy to show that the norm function is multiplicative and the trace function is additive.
Also, the group of units can be described as elements with norm not equal to 0.
We denote the group of units with norm 1 in this ring by (O∆/aO∆)

∗. Then we have the
following proposition:

Proposition 2.1. If ϕ∆(a) is the order of the group of units with norm 1 modulo a,
gcd(a,∆) = 1, and a =

∏
p|a p

ap, then

ϕ∆(a) =
∏
p|a

pap−1

(
p−

(
∆

p

))
where

(
∆
p

)
is the Legendre symbol.

This is equivalent to showing that the above expression for ϕ∆(a) equals the number of
solutions to the equation

(2.1) x2 −∆y2 ≡ 1 (mod a).

Proof of Proposition 2.1. We first prove the theorem for prime numbers, then prime powers.
The theorem will then follow through the Chinese Remainder Theorem. Suppose first that
∆ is a quadratic residue modulo p, with δ2 = ∆. Then we have

x2 −∆y2 = (x+ δy)(x− δy) = 1.

This means that there exists some l ∈ F×
p such that

x+ δy = l and x− δy = l−1.

Then x = l+l−1

2
and y = l−l−1

2δ
. The map l → (x, y) given above is injective, and thus there

are p− 1 solutions to Equation 2.1.
Now we assume ∆ is a quadratic non-residue modulo p. Similar to deriving rational points

in a circle, we choose a base solution to Equation 2.1, say (x, y) = (0, 1). Then every other
solution can be parametrized of the form y = mx + 1, where m ∈ Fp is arbitrarily chosen.
Actually m ̸= 0 gives a tangent line, and the point (0,−1) cannot be attained through this
parameterization. So we assume for know m,x ̸= 0 for now.
We have

x2 −∆(mx+ 1)2 = 1

=⇒ (1−∆m2)x2 = −2∆mx

=⇒ x =
−2∆m

1−∆m2
.
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Note that we can divide by 1 − ∆m2 as ∆ is a non-square. This gives p − 1 solutions for
(x, y) ranging m through Fp except for m = 0. In total, we have p+ 1 solutions.
Now, we prove that for r ≥ 2, ϕ∆(p

r) = pϕ∆(p
r−1), which will complete the proof of the

proposition through induction. Let x = cpr−1+d and y = upr−1+v be a solution to Equation
2.1 modulo pr., where 0 ≤ c, u < p, and 0 ≤ d, v < pr−1. We have

x2 −∆y2 ≡ (cpr−1 + d)2 −∆(upr−1 + v)2 ≡ d2 −∆v2 + 2pr−1(cd−∆uv) ≡ 1 (mod pr),

implying that d2 −∆v2 ≡ 1 (mod pr−1) and that cd−∆uv ≡ 0 (mod p). For a fixed (d, v),
there are exactly p distinct (c, u) pairs that satisfy the second congruence. Thus, the relation
claimed above holds. ■

3. Lucas Sequences

For this paper, we would need to know the two Lucas sequences Uk(P,Q) and Vk(P,Q)
where P,Q ∈ Z defined as

Uk+2 = PUk+1 −QUk; U0 = 0, U1 = 1

Vk+2 = PVk+1 −QVk; V0 = 2, V1 = P.

if P 2 − 4Q2 is a square modulo n, then both sequences Uk and Vk can be expressed as

(3.1) ≡ c1α
k
1 + c2α

k
2 (mod n)

where c1, c2, α1, α2 ∈ Z. If P 2 − 4Q is a non-square, then it’s difficult to compute the Lucas
sequence modulo p using Equation 3.1.
We will only be concerned with computing Vk(P, 1) modulo n such that P 2 − 4 is a not a

perfect sqaure. Using the characteristic equation, it is possible to check the following identity

(3.2) Vi+j = ViVj − Vi−j

holds in Z.

Lemma 3.1. Let ∆ be a non-square integer and a and odd integer with gcd(a,∆) = 1. Let
α = x+∆y be an element of O∆. For natural numbers n we have

αn ≡ Vn(2x,N(α))

2
+ yUn(2x,N(α))

√
∆ (mod aO∆).

As a corollary, we have

Tr(αn) ≡ Vn(2x,N(α)) (mod aO∆).

Proof. Let P = 2x and Q = x2−∆y2. Since ∆ is a non-square, so must P 2−4Q. The result
holds trivially for n = 0 and n = 1. By induction, the following expression holds:

αn = Pαn−1 −Qαn,

which proves the lemma by induction along with the defining recurrences of Un and Vn. ■

We shall now present an algorithm that mimicks the square and multiply approach used
to exponentiate quickly modulo n.

Algorithm 1. Let

k =
s−1∑
i=0

ki2
i
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be the binary expansion of k Note that ki ∈ {0, 1}, and ks−1 = 1. We define Ki from
s− 1 ≥ i ≥ 0 so that

Kj =
s−1∑
i=j

ki2
i−j.

We have the following identities for Kj−1 and Kj−1 + 1:

Kj−1 = kj−1 + 2Kj = (Kj + kj−1) +Kj

Kj−1 + 1 = kj−1 + 2Kj + 1 = (Kj + kj−1) + (Kj + 1)

Plugging these identites to Equation 3.2 gives

VKj−1
= VKj+kj−1

VKj
− Vkj−1

VKj−1+1 = VKj+kj−1
VKj+1 − Vkj−1+1.

The algorithm thus must find V0, V1, and V2 as a pre-computation .Thus, we can inductively
find VKj−1

and VKj−1+1 using VKj
and VKj+1. Eventually, the algorithm terminates when it

reaches K0 = k.

4. The LUC and the Catalano, Gennaro et al. cryposystems

A natural number n is an RSA integer if it is the product of two primes p and q. These
numbers are used as the modulus when encrypting and decrypting in the RSA cryptosystem.
The LUC cryptosystem improves the speed of RSA, by working in the ring O·/aO· and
computing the trace of αe, for some element α. As seen in Lemma 3.1, this can be done
using a Lucas sequence.

Specifically, we have the following (here Ve(x) denoted Ve(x, 1)):

Definition 4.1. Let n = pq be an RSA integer, and let Λn be the set

Λn = {x ∈ Z, 0 ≤ x < n, gcd(x2 − 4, n) = 1}
and let e be an integer coprime to (p2 − 1)(q2 − 1). Define the function LUCe : Λn → Λn as

x → Ve(x) (mod n)

Claim 4.2. The function defined above is well-defined and is a permutation of Λn.

Proof. Suppose x ∈ Λn, and let ∆ be a non-square integer such that ∆ ≡ x2 − 4 (mod n).

Then gcd(∆, n) = 1. Define α ∈ O∆ such that α ≡ x+
√
∆

2
(mod nO∆). Thus, α is a norm 1

element modulo n, and has trace x. Thus, we have LUCe(x) ≡ Ve(x) ≡ Tr(αe) (mod n). As
N(αe) ≡ 1 (mod nO∆), and by Lemma 3.1

αe ≡ Ve(x) + Ue(x)
√
∆

2
(mod n).

It follows that

4 ≡ 4N(αe) ≡ N(2αe) = (Ve(x))
2 − (Ue(x))

2∆ (mod n)

=⇒ (Ve(x))
2 − 4 ≡ (Ue(x))

2∆ (mod n)

Thus, Ve(x) ∈ Λn if and only if Ue(x) is coprime to n.
Since the order of (O∆/nO∆)

∗ equals

ϕ∆(n) =

(
p−

(
∆

p

))(
q −

(
∆

q

))
,
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we have that the number e is coprime to ϕ∆(n), making the homomorphism α → αe an
automorphism in the group (O∆/nO∆)

∗. The inverse is a map α → αd where de ≡ 1
(mod ϕ∆(n)) (in fact, e is the public key of the LUC cryptosystem, and d is the private key).
By Lemma 3.1, we have the following:

x+∆

2
≡ α ≡ (αe)d (mod nO∆)

≡ Vd(Ve(x)) + Ue(x)Ud(Ve(x))
√
∆

2
(mod nO∆)

Thus, Vd(Vex)) ≡ 1 (mod n), and Ue(x)Ud(Ve(x)) ≡ 1 (mod n). The second congruence
implies that Ue(x) is coprime to n, and thus Ve(x) ∈ Λn. Since e and d play symmetric roles,
we can conclude by the first congruence that the LUC function is a permutation of Λn. ■

Corollary 4.3. With the same notation as above, LUCe is well-defined in and a permutation
of the set

Λ′
n = {x ∈ Λn : gcd(x, n) = 1}.

Proof. It suffices to show that LUCe is a self map of {x ∈ N : gcd(x, n) ̸= 1}. Thus we
must prove that Ve(0) ≡ 0 (mod π) for every prime factor π of n. Since e, coprime to
(p2 − 1)(q2 − 1), must be odd, we have

Ve(0) ≡ Tr((
√
∆/2)e) ≡ 0 (mod π),

proving that the set of all numbers not coprime to n are mapped to themselves. ■

The decryption algorithm for the LUC cryptosystem boils down to finding e−1 (mod ϕ∆(n))
and computing Vd(c) (mod n), where c is the ciphertext.
Another cryptosystem, introduced by Catalano, Gennaro et al. employs a probabalistic

approach to RSA. Let n = pq, and let e be an integer coprime to ϕ(n) = (p− 1)(q− 1). The
pair (n, e) is the public key of the cryptosystem. Next, we choose a random element r from
the set

Rn = {x ∈ Z, 0 ≤ x < n, gcd(x, n) = 1}.
The cipher function Ee : Z/nZ×Rn → (Z/n2Z)× is as follows

(m, r) → (1 +mn)re (mod n2),

where m is the plaintext and r is random.
This function can be shown to be bijective. We have that the ciphertext c ≡ (1+mn)re ≡

re (mod n). Since exponentiation by an exponent e coprime to ϕ(n) gives rise to an auto-
morphism in Rn, the random number r is uniquely determined by c. The uniqueness of m
follows as a consequence of the uniqueness of r, by diving c by re modulo n2.

To decrypt c ∈ Z/n2Z, we first compute d ≡ e−1 (mod ϕ(n)). Next, we reduce c modulo
n, and exponentiate this by d to retrieve the value of r. By computing c/re (mod n2), we
can retrieve 1 +mn, and thsu retrieve m.

5. Castagnos’ Quadratic Number Field Cryptosystem

This cryptosystem aims to bridge the two cryposystems that have just been described.
This system is able to have an extremely good computational efficiency due to exponentiating
being hastened by Algorithm 1. The description of the cryposystem has been made in 1.1.
We shall now prove that the cryposystem works:
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Proposition 5.1. The function E ′
e is well-defined and bijective.

Proof. Let (m, r) be an element of Z/nZ × Λ′
n. To prove that E ′

e(m, r) is well defined, we
need to show that c ≡ (1 +mn)Ve(r) ∈ Ωn. Since c (mod n) equals LUCe(r), and r ∈ Λ′

n,
it follows that c (mod n) is in Λ′

n, which implies that c ∈ Ωn.
I claim that |Λ′

n| = (p − 3)(q − 3). This is because, if we require that n is coprime with
x2 − 4 and x, this implies that p and q must not divide any of (x− 2), (x+ 2), and x. This
restrict the congruences classes modulo p and modulo q to p− 3 and q − 3 respectively, and
thus (p − 3)(q − 3) congruences (mod n) will satisfy the conditions for Λ′

n. Since Ωn has
the exact same definition, though extended till n2, we have |Ωn| = n(p− 3)(q − 3).
These results imply that the domain and co-domain of E ′

e have the same cardinality, thus
it sufficies to show that the cipher function is one to one. Suppose there exists distinct
(m1, r1), (m2, r2) such that (1 + m1n)Ve(r1) = (1 + m2n)Ve(r2). Reducing modulo n gives
us the LUC function on r1 and r2, which we know is bijective over Λ′

n. Thus r1 = r2,
and m1 = m2 by a similar argument to the one we used for the Catalano, Gennaro et al.
cryposystem. ■

To conclude this paper, we present the encryption and decryption algorithm for the Castag-
nos cryptosystem. First, we prove a lemma:

Lemma 5.2. Let n = pq. Suppose c = E ′
e(m, r) be the cipher text of some message, and let

∆ ≡ r2 − 4 (mod n) be a non-square integer. For each prime factor π of n we have that(
∆

p

)
=

(
c2 − 4

p

)
Proof. Let α ∈ O∆ such that α = r+∆

2
(mod n2). We have N(α) ≡ 1 (mod n2), and thus by

Lemma 3.1,

4 ≡ 4N(αe) ≡ (Ve(r))
2 − (Ue(r))

2∆ (mod n)

=⇒ ∆ ≡ (Ve(r))
2 − 4

(Ue(r))2
(mod n)(5.1)

It must be that Ue(r) is invertible in the above congruence as r ∈ Λ′
n implies that ∆ is

coprime to n, along with Claim 4.2 implying that gcd((Ve(r))
2 − 4, n) = 1. Thus, Equation

5.1 alongside the fact that c ≡ Ve(r) (mod π). implies that(
∆

π

)
=

(
(Ve(r))

2 − 4

π

)
=

(
c2 − 4

π

)
.

■

Algorithm 2 (Encryption). Given a public key (n, e) and a plaintextm ∈ Z/nZ, the encryptor
chooses a random r between 1 and n excluding 2 and n− 2. Note that if n is hard to factor,
then r ∈ Λ′

n with probability close to 1. The cipher text is generated by

E ′
e(m, r) = (1 +mn)Ve(r).

The decryptor will be knowing the factorisation of n = pq, and would also be aware of
these four private key exponents:

d := (dp,1, dp,−1, dq,1, dq,−1),

where dπ,i = e−1 (mod π) for i = ±1 and for π being a prime divisor of n.
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Algorithm 3 (Decryption). The decryptor is aware of p, q, and the four component vector
private key d, along with the ciphertext c. For the pre-computation, the decryptor finds
invp ≡ p−1 (mod q) and invq ≡ q−1 (mod p).

For each π ∈ {p, q}, we compute

iπ =

(
c2 − 4

π

)
rπ = Vdπ,iπ

(c) (mod π).

This will compute the value of r modulo p and q; its proof of correctness follows immediately
from Lemma 5.2 and the fact that Ve and V(d,iπ) are inverses of one another modulo n.
We then compute

r = rp + p(rq − rp)invp (mod n)

Now that we have the value of r, the following computations will easily allow use to retrieve
the value of m easily:

For π ∈ {p, q}, compute

kπ = c(Ve(r))
−1 (mod π2)

lπ =
kπ − 1

π
mπ = kπ × invn/π (mod π),

where invn/π is the inverse of the prime not chosen as π modulo π. Finally, we can combine
mp and mq to recover the original plaintext m:

m = mp + p(mq −mp)invp (mod n)

Note that from this algorithm, we can infer that we require e to be coprime to (p2−1)(q2−1)
as it is a common multiple of all possible values of ϕ∆(n).
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