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1 Basics

Definition: A simple continued fraction is an expression like

a0 +
1

a1 + 1
a2+···

with infinite or finitely many terms (when we say terms we refer to the ai’s),
where ai are all integers, and (except for a0) are all positive. This is alternatively
written as [a0; a1, a2, a3, · · · ] for compactness. If there are finitely many terms,
say n terms, we write it as [a0; a1, a2, a3, · · · , an].

Definition: The mth convergent of the continued fraction [a0; a1, a2, a3, · · · ]
is the continued fraction [a0; a1, a2, a3, · · · , am].

You may be slightly worried about the infinite continued fraction, but we
can define it to be the limit of the convergents (which as we will see does exist).

Example: We compute the continued fraction [1; 1, 1, 1]. Convergent 0
is just 1. The next convergent is then 1 + 1

1 = 2
1 . The next convergent is

1 + 1
1+ 1

1

= 1 + 1
2 = 3

2 . Convergent 3 is 5
3 and is the value of our continued

fraction.

Theorem 1. A simple continued fraction is finite iff it is a rational number.

Proof sketch: For any finite continued fraction, we can inductively evaluate
it, yielding a fraction at each stage, and thus when we finish the evaluation in
a finite number of steps, we will have a rational value. For any rational with
denominator 1, we can trivially find a continued fraction. Suppose we can find
a finite continued fraction for any rational with denominator less than b. For a
rational a

b , let a0 = bab c, and let c be such that a0 + c
b = a

b . Then a
b = a0 + 1

b
c

.

However, note that c < b, and thus we can find a continued fraction for b/c by
our inductive hypothesis, say [a1; a2, a3, · · · , ai]. Then a

b = [a0; a1, a2, · · · , ai].
This can be adapted easily into an algorithm for computing a finite (or even an
infinite) continued fraction, and is in fact related to the Euclidean Algorithm.
This algorithm can be shown to give a more or less unique continued fractions
with some slight subleties.

Definition: Let pn and qn to be the unique positive numbers such that pn
qn

is equal to the nth convergent of α and pn and qn are relatively prime integers.
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Theorem 2. For α = [a0; a1, a2, · · · ] and integer n, we have pn
qn
− pn−1

qn−1
=

(−1)n−1

qnqn−1
and that pn

qn
− pn−2

qn−2
= (−1)nan

qn−2qn
.

Proof: We have that pn and qn of [a0; a1, a2, · · · ] satisfy the recursion pn =
anpn−1 + pn−2 and qn = anqn−1 + qn−2, which can be shown fairly easily by
inducting on n, and is left as an exercise.

We now show that pnqn−1 − pn−1qn = (−1)n−1. We can induct on n again.
The base case is trivial We have that

pnqn−1 − pn−1qn
qn−1qn

=
(anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

qnqn−1
=
−(pn−1qn−2 − pn−2qn−1)

qnqn−1

. By induction, we then have that pnqn−1 − pn−1qn equals (−1)n−1. Since
pn
qn
− pn−1

qn−1
= pnqn−1−pn−1qn

qn−1qn
, we have pn

qn
− pn−1

qn−1
= (−1)n−1

qnqn−1
.

Then

pn
qn
−pn−2
qn−2

=
(−1)n−1

qnqn−1
+

(−1)n

qn−2qn−1
=

(−1)n(qn − qn−2)

qn−2qn−1qn
=

(−1)nanqn−1
qn−2qn−1qn

=
(−1)nan
qn−2qn

.
Corollary: The even convergents p0/q0, p2/q2, · · · is a increasing sequence

while the odd convergents form a decreasing sequence.
Corollary: The convergents converge, and the value they converge to is

greater than all the even convergents and smaller than all the odd convergents.
Corollary: |pnqn −α| <

1
q2n

(ie convergents are very good approximations for

α)

Theorem 3. : If |p/q − β| < 1
2q2 then p/q is a convergent of β.

We refer readers to [10] for a proof.

2 Irrationality

Historically, one of the main uses of continued fractions was to prove irrational-
ity. The first proofs of irrationality were through use of continued fractions.

Theorem 4. (Euler) e−1
2 = [0; 1, 6, 10, 14, 18, 22, 26, 30, · · · ].

Euler showed this using a differential equation: the Ricatti equation, ady +

y2dx = x
−4n
2n+1 dx. How Euler did it is further elaborated in [3]. Euler also showed

that e− 1 = [1; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, · · · ].
Corollary: e is irrational

Theorem 5. (Lambert) tan(x) = x

1− x2

3− x2

5− x2···

, and furthermore, for any ratio-

nal x 6= 0, the right hand side is irrational.
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We begin with

tan(x) =
x− x3

3! + x5

5! − · · ·
1− x2

2! + x4

4! − ·
=

x

1− x22! +
x4

4! −·
1− x23! +

x4

5! −···

=
x

1− x2 1/3− x2

3!5+
x4

5!7−···
1− x23! +

x4

5! −···

. Repeating the process yields the equation x

1− x2

3− x2
5−···

(feel free to repeat this

process a few more times to get the beginning of the continued fraction). This
isn’t entirely rigorous, since we need to show the convergents of this fraction
do in fact converge to tan(x), but that is in fact true, and we thus have an
expression for tan(x). Showing it is irrational is a little more difficult, and those
interested may consider [5] or [11].

Corollary: π is irrational. If π were rational, then tan(π4 ) would be irra-
tional by the above theorem, but this is not the case since tan(π4 ) is 1.

3 Factoring

Let n > 1 be an odd composite number. We consider the continued fraction of√
n. Consider the ith convergent. Let Qi = a2i − b2in. Then Qi ≡ a2i (mod n).

These Qi when reduced modulo n have that −2
√
n < Qi < 2

√
n We can factor

these Qi and try to find a subset which multiplies to a square, and thus, as
in the Quadratic Sieve factoring method, construct two squares which are non
trivially equal.

Consider RSA encryption. Suppose p < q < 2p, which should be somewhat
reasonable since the two primes should be around the same size, with n = pq
public. Say the encryption key is e and the decryption key is d. Suppose
by chance d < 4

√
n, in which case we have an attack. Let ed − 1 = kφ(n).

Since e < φ(n), d > k. We also have that 3
√
n > p + q. Thus | en −

k
d | =

|kφ(n)+1−nk|
nd = k(p+q−1)+1

nd ≤ 3k
d
√
n
< 1

3d2 . This implies that k
d is a convergent of

e
n . Thus computing the convergents of e

n and checking them all (note that there
are relatively few convergents of e

n ) will yield k and d. This then completely
breaks the encryption, since, if these are the correct k, d, we can find φ(n) and
thus obtain a factorization quickly.

Example: Consider n = 7119477283. Let e = 525410191. Checking e
n ’s

convergents yields 20/271 and d = 271.

4 Various Neat Things Which We State With-
out Proof

4.1 Sums of Two Squares

Let p be a prime congruent to 1 modulo 4. Suppose 0 < w < p
2 and w2 ≡

−1 (mod p). Compute the continued fraction of p/w. It will be of the form
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[a0a1, a2, · · · am, am, · · · , a2, a1, a0]. Then compute the m− 1th convergent and
the mth convergent: pm−1

qm−1
and pm

qm
. Then p2m−1 + p2m = p. This is further

considered in [8] and [10]
Example: take 601. Suppose we find that 1252 ≡ 1 (mod 601). We compute

601
125 = [4; 1, 4, 4, 1, 4]. The second convergent is 5

1 and the third convergent is
24
5 , and 52 + 242 = 601.

4.2 On the Terms of Continued Fractions

For almost all real α, the probability an is equal to some given k is about
log(1+ 1

k(k+2)
)

log(2) . This can be used to show that for almost all real α, the geometric

mean of the terms of the continued fraction of α is Khinchin’s constant which
is about 2.68545, though the arithmetic mean is unbounded.

It is unknown if Khinchin’s constant is irrational or not.

4.3 Various Miscellaneous Continued Fractions

1

1+ e−2π

1+ e−4π

1+ e−6π

1+e−8π

= (

√
5+
√
5

2 −
√
5+1
2 )e2π/5.

√
2
eπ

1
erfc( 1√

2
)

= 1 + 1
1+ 2

1+ 3
1+ 4

1+ 5
1+ 6
···

.

4.4 Pell Equations

If (p, q) ∈ Z2 is a solution to the Pell equation for a nonsquare d, x2−dy2 = ±1,
then p

q is a convergent of
√
d. Since

|p−
√
dq| = 1

p+
√
dq

<
1

(1 +
√
d)q

<
1

2q

and thus |pq −
√
d| < 1

2q2 , and thus p
q is a convergent of

√
d.

Furthermore, let
√
d = [a0; a1, a2, · · · am], where m is the smallest period.

(pn, qn) is a solution to the Pell Equation iff m|n + 1. This topic is further
discussed in [8] and [10].

5 Problems

1. What are the convergents of [1, 1, 1, · · · ], and what does it converge to?

2. When is a continued fraction periodic?

3. What are the convergents of
√

2.
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4. Transform the Wallis Product 4
π = 3·3·5·5·7···

2·4·4·6·6··· into the continued fraction

1 +
12

2 + 32

2+ 52

2+···

5. Use the Wallis product to find π = 3 + 12

6+ 32

6+ 52
6+···

.

6. What is [1; 3, 5, 7, 9, · · · ].

7. Show e2 is irrational. More generally, show eu for u ∈ Q is irrational.

5.1 Sources
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5/
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