
SHA-256 AND BITCOIN

TARANG LUNAWAT

1. Introduction

SHA-2 is a keyless hash function family published by the National Institute of Standards
and Technology (NIST) in 2001 as an improvement of its previous SHA-1 and SHA-0 hashing
algorithms. SHA-2 or Secure Hash Algorithm 2 is comprised of four hash functions: SHA-
224, SHA-256, SHA-384, and SHA-512. These functions all have practical applications.
Specifically, SHA-256 has a wide variety of uses, including commitment schemes, tamper
resistant encoding and signatures, and Bitcoin. This paper will cover the general structure
of hash functions, and then cover in depth the SHA-256 hash function. Finally, it will cover
the place of SHA-256 in the context of Bitcoin.

2. General Hash Function Structure

Definition 1. A hash function is a function that maps an input m of arbitrary length to an
output hash h of fixed length.

This hash is a ‘fingerprint’ of sorts for the original input, and can be used to verify the
original message.

Definition 2. Two distinct messages m1 and m2 are said to be a collision if they result in
the same hash.

Definition 3. A hash function is said to be collision-resistant if it is difficult to find any
two messages that are a collision.

Since the hash length is much smaller than possible input length, there naturally exist less
possible hashes than inputs, and therefore collisions. Collision-resistance is concerned with
the difficulty of finding such collisions, not their existence.

Definition 4. A hash function is pre-image resistant if it is difficult to find the input m
that corresponds to a given hash value.

There is actually no formal proof of this property in the case of SHA-256, but it is generally
accepted to be true, and no one has yet found a way to prove otherwise.

Definition 5. A hash function is second pre-image resistant if it is difficult to find another
input m2 that corresponds to the hash value of m1.

Collision resistance implies second pre-image resistance, but not pre-image resistance.

Definition 6. A hash function is uniformly distributed if each hash has an equal probability
of resulting from any message. Any minor variance in inputs should result in great variance
in the resulting hashes.

Date: December 2019.
1



2 TARANG LUNAWAT

A hash function is said to be secure if it is collision-resistant, pre-image resistant, and
uniformly distributed. In addition, a hash function should be fairly efficient to compute.

Typically, hash functions are compromised of two parts: the compression function and the
domain extender. The compression function has two inputs, a key and an input message
of specified length. Before being passed into the compression function, the block of data is
typically padded, both to add variance and ensure that the message is an integer multiple
of the required block size. Then, the compression function hashes the processed block using
the key. The domain extender strings together multiple compression functions so that the
entire hash function can handle an input of any arbitrary length.

The SHA family uses the Merkle-Damg̊ard scheme to extend the domain of the compression
function. The first iteration of the compression function is given the first input message block
and an initialization vector (IV) as the key. The output hash of that compression function
is then used as the key for the next compression function iteration and next block of input.
Figure 1 shows a diagram of this scheme.

Example. Let us define our compression function cf(m,h) = h−m. Obviously, this is a very
bad compression function, but it will serve our purposes. With m = 314156, a block size
of 2, and an initialization vector of 42, the execution of the Merkle-Damg̊ard is as follows.
(Assume there is no padding.)

We take our first block, 31, and the IV 42. cf(31, 42) = 11. We take this and our message
block for the next iteration. cf(41, 11) = −30, and then cf(56,−30) = −86. Sp, our final
hash of m will be -86.

Figure 1. [Tel07] The Merkle-Damg̊ard domain extender

3. Message Padding

The hash function is given some message m of length ` to operate on. Before iterating
through either the domain extender or the actual compression function, m is padded both to
create viable inputs for the function and to add variance. We will call the padded message
M .

Definition 7. A padding block (PB) is a string of numbers appended onto the end m to
create M , ensuring that M ’s length is an integer multiple of the block size.



SHA-256 AND BITCOIN 3

SHA-256 splits M into blocks of 512 bits, therefore the length of M must be a multiple of
this number. According to NIST specifications, PB start a 1. This one is specifically added
instead of just zeroes to add variance that was otherwise lacking. Then, j zeroes are added,
such that j is the lowest integer that satisfies `+ 1 + j ≡ 448 (mod 512). Finally, the 64-bit
representation of ` in binary is appended to the end of m, resulting in a total message length
that is a multiple of 512. This padding specification constrains ` such that ` ≤ 264 − 1.

Example. Let us takem to be comprised of 320 0’s with 2 1’s after it. ` = 322, so j = 125. The
padded message M = 000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001110000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000101000010. (320 0’s, 3 1’s, 180 0’s, and 322
in binary (9 digits).

4. Constants and Function Overview

SHA-256 iterates on block lengths of 512 bits, denoted M (1) through M (N). M (i) is then

broken up into 16 32-bit words, denoted as M
(i)
0 through M

(i)
15 . The compression function

iterates 64 times for each M i, and passes the resulting hash into the iteration for the next
message block.

There are a total of 6 functions used in SHA-256: Ch(x, y, x), Maj(x, y, z), Σ0, Σ1, σ0,
and σ1. These will be defined in the next section.

In addition, SHA-256 has two working variables (also called chaining variables), T0 and
T1, which store intermediate values, and eight registers, a, b, c, d, e, f , g, and h.

The initial hash value, H0, consists of 8 32-bit blocks H
(0)
0 through H

(0)
7 , which are calcu-

lated by taking the first 32 bits of the fractional parts of the square roots of the first 8 prime
numbers. The full values can be found in the official NIST documentation [NIS15].

Finally, SHA-256 has 64 32-bit word constants, denoted as K0 through K63, collectively
referred to the key (SHA-256 is called keyless because this ”key” is public information, not
private). As per NIST standard, these values are the first 32 bits of the fractional parts of
the cube roots of the first 64 prime numbers. The full values can be found in the official
NIST documentation [NIS15].

5. Function Arithmetic

For each block M (i), the SHA-256 function iterates 64 rounds, starting with t = 0 and
incrementing up to t = 63. Each round takes in an input Wt, defined below, and Kt, as well
as the 8 registers a through g. At the end of each round, these registers are updated, used
to calculate the ith hash value H(i), and passed as the initialization values when the function
processes the block M (i+1). It is these eight registers, that when strung together at the end,
result in the message’s hash.

SHA-256 uses a message schedule Wt of 64 words labeled W0 to W63. For message blocks
M (1), M (2)... M (N),

Wt =

{
M

(i)
t 0 ≤ t ≤ 15

σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16 16 ≤ t ≤ 63



4 TARANG LUNAWAT

All addition is performed mod 232. Each round of the SHA-256 compressor function uses a
value Wt as an input.

The other four functions used in SHA-256 are:

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ0 = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22)

Σ1 = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25)

σ0 = (x≫ 7)⊕ (x≫ 18)⊕ (x≫ 3)

σ1 = (x≫ 17)⊕ (x≫ 19)⊕ (x≫ 20)

If these symbols are unfamiliar, they are bitwise operators. ⊕ is XOR, ∧ is AND, ¬ is
negation, and ≫ is the right bitwise rotation, which is like a bitwise right shift except
that those bits that shift outside of range are taken and appended back onto the left of the
number, leaving a result that is the same size as the original number.

Example. The triple bitwise right rotation of 101010, 100011 ≫ 3 = 011100

The entire SHA-256 function computation is done as follows. For each block M (1) through

M (N), Wt is calculated. The eight registers a through g are set equal to H
(i−1)
0 through

H
(i−1)
7 respectively for the block M (i).
The hash function runs through 64 iterations, each of which calculates T1 and T2 as follows:

T0 = h+ Σ1(e) + Ch(e, f, g) +Kt +Wt

T1 = Σ0(a) + Maj(a, b, c)

All variables are updated:

a = T0 + T1

b = a

c = b

d = c

e = d+ T1

f = e

g = f

h = g

Finally, the ith hash value is computed:

H
(i)
0 = a+H

(i−1)
0

H
(i)
1 = b+H

(i−1)
1

H
(i)
2 = c+H

(i−1)
2

H
(i)
3 = d+H

(i−1)
3



SHA-256 AND BITCOIN 5

H
(i)
4 = e+H

(i−1)
4

H
(i)
5 = f +H

(i−1)
5

H
(i)
6 = g +H

(i−1)
6

H
(i)
7 = h+H

(i−1)
7

This process is repeated for every message block through M (N), with HN being the final
hash value. Figure 2 provides a visual interpretation of an inner round of the compression
function.

Figure 2. [Tel07] Diagram of an inner round of the SHA-256 function. The
squares represent addition.

6. In the Context of Bitcoin

Bitcoin is one of the many cryptocurrencies that are in practice today. It, like any cryp-
tocurrency, takes advantage of cryptographic topics to facilitate the exchange of currency.
One of the advantages of Bitcoin is that it is decentralized: there is no government to issue
the money, nor any bank to manage the accounts and validate the transactions. The “back-
bone” of Bitcoin is a system of decentralized verification which does not rely on trusting any
one party to be honest; it consists of a combination of digital signatures and cryptographic
hashes.

Bitcoin is in essence a ledger of all the transactions that have occurred. This record
itself the currency. Any new transactions made are simply recorded, without anything being
transferred in actuality. In order to avoid being centralized, each user can maintain their
own record of the transactions, and each new transaction is publicly broadcasted.



6 TARANG LUNAWAT

6.1. Digital Signatures. Digital signatures are used to verify that transactions are not
forged. Each user creates a public and private key (usually, a program does this for them),
as well as an address, which is a hash of their public key. Additionally, a user can create as
many identities as they’d like, as a way to maintain their anonymity, and prevent observers
from linking together all their transactions. When a transaction is broadcasted, the sender of
the money adds their digital signature to the bottom of the transaction as a way of signifying
that the transaction is what they intended it to be. The signature changes depending on the
transaction, so no one can simply copy the signature onto another transaction. In addition,
each transaction includes a unique identification number, so identical transactions will still
have different signatures. This way, no one can simply execute the same transaction a
multiple of times unless the sender of the currency actually intended it. A transaction can
only be considered valid if the signature corresponds to the message, and the transaction
is done with Bitcoin that the sender has in possession (verifying this requires a history of
previous transactions, which is why all are kept).

6.2. Blockchain. Bitcoin’s ledger is organized into blocks, which each contain a record of
multiple transactions. These blocks are chained together to form the complete history of
transactions, and are thus called Blockchain.

6.2.1. Mining. Each block contains, along with a list of transactions, a hash of the previous
block and a nonce, which together are called a Hash Pointer. Anyone can create the next
block in a chain, as long as they provide proof-of-work, which is a nonce such that the hash
of the previous hash, transactions, and nonce result in a hash that starts with a certain
number of 0’s and lower than a specified value. This specified value is periodically lowered
as the number of miners increases such that each new nonce is predicted to be found in
about 10 minutes. Since SHA-256 is uniformly distributed, the only way to find a nonce
that achieves this is by brute force. Checking that a nonce is valid, however, is very easy.
Once a user finds a nonce, they broadcast their block to other users, who verify it and either
add it to their own chain or reject it. A block is considered valid only if it contains a proof-
of-work. Users are incentivized to donate CPU to finding nonces by a block reward, which
awards whichever user finds and broadcasts the nonce first a certain amount of Bitcoin (this
transaction is added to the block). This block reward is an exception to the rules validating
transactions. The block reward is not signed, and in addition does not come from existing
Bitcoin. All Bitcoin originally come from block rewards, and the reward amount decreases
geometrically over time, ensuring that the currency will not be inflated. Searching for nonces
to earn Bitcoin is a common practice, and is called mining because it both requires a lot of
searching and introduces new Bitcoin into the system.

6.2.2. Transaction Fees and Non-Mining Users. Each block is restricted to about 2,400
transactions, which is a slow rate when compared to the rate at which our world oper-
ates today. Consequently, there are usually more transactions broadcasted at a time than
can be included in a block. To incentivise miners to incorporate a transaction into a block,
users leave transaction fees to whoever finds a nonce for the block their transaction is in.

Non-mining users do not have to record every transaction they hear. They can simply
listen for new blocks being broadcasted, and record those. In practice, regular users do not
have to be fluent in how exactly Blockchain works. They can use programs to handle this
all for them.



SHA-256 AND BITCOIN 7

6.3. Verification. Each new block in the chain contains a hash of the previous block in
order to preserve the order of the blocks, and therefore verifies the previous block. The
standard convention, when presented with two conflicting chains, is to trust the chain that
has the most amount of blocks, because it has had the most computational power put into
it. Tampering with any one block would alter the hash of that block. Since the hash of that
block is used in the next block, it would also alter the hash of the next block and require
recomputing the nonce. This process would have to be repeated for every since block in the
chain after the tampered block, which would require an unfeasible amount of computational
power for one person, since the SHA-256 hash function is hard to invert. The longer chain
has a lower probability of being compromised, since it would require more calculation to alter
than the shorter chain, and would be harder to forge. If both chains are the same length,
users must wait until a block is added to one of them.

6.3.1. Why Does This Work? We can explore why this policy works by putting ourselves
into the shoes of a dishonest miner. Let us say that Alice has to pay Bob a certain amount
of Bitcoin, but she does not want others to know this. She creates a block that includes this
transaction, but instead of broadcasting it to everyone, only broadcasts it to Bob. As far as
the other miners are concerned, Alice is still in possession of those Bitcoin. Bob will, as a
result, be broadcasted two copies of the next block. As per standard, he must keep track of
both branches of the chain until one is longer. Since no one else knows about Alice’s chain,
she must work as fast as all the other miners combined to keep up with their rate of growth.
This is, of course, unfeasible unless Alice gets incredibly lucky, as she would need 50% of
the computational power that the other miners have combined in order to keep up. Alice
will fall behind, and Bob will recognize the block without the transaction as the valid block,
therefore rejecting Alice’s transaction.

Since it is possible to forge one or two blocks without any issue, a block cannot be trusted
until a few blocks are added after it, and it is verified that this is the longest chain. The
Bitcoin standard is that a transaction is only considered confirmed when it is part of the
longest possible chain, and at least 5 blocks follow it.

6.4. Other Miscellaneous Comments. It is possible that two miners discover two differ-
ent nonces that are valid and broadcast them at the same time. Some people in the network
will receive one first, while others will receive the other. In this case, both blocks must be
kept, but miners work on the one they received first. Whichever branch receives another
block first is considered the official continuation of the chain, and any transactions that were
part of the shorter chain once again must wait to be incorporated into a block of the longer
chain.

It is also possible that a broadcast of one block reaches most miners, but not all of them.
In this case, when a miner that received the block broadcasts the next block to a user that
did not, that user will realize that the hash contained in the new block does not correspond
to the last block that they have recorded. They can then request the missing block.

Bitcoin’s system is based around four of its qualities, which are what make it a compelling
system to use: semi-decentralized, publicly verifiable, tamper resistant, and eventually con-
sistent. Bitcoin is semi-decentralized in that it is not maintained by any one entity, but a
collaboration of a network of computers. It is publicly verifiable because both the transac-
tions and the hash function are public knowledge. Anyone can create as many identities as
they would like, and all the pseudonyms look the same, maintaining anonymity. The tamper



8 TARANG LUNAWAT

resistant quality of Blockchain was described above, and Bitcoin is eventually consistent in
that the longest chain of transactions becomes the main chain.

This paper provides a basic overview of how Bitcoin functions, but not all details. Data
efficiency based on Merkle trees are not covered, as are multiple in/out transactions or
change. An overview of these is given in the original Bitcoin paper [N+08].

7. Conclusion

SHA-256 was developed as part of SHA-2, which builds on SHA-1 and is considered more
secure. However, as the capabilities and speed of computerized calculations increases, SHA-2
will become less secure, and is projected to last less than a decade. Attacks have already
been developed that compromise the security of SHA-256, and so SHA-3, the next in the
series, is already being developed. It is likely to have an even more computationally complex
hash function, and will eventually become the standard, with SHA-2 being abandoned like
the previous versions of the family.

References

[N+08] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
[NIS15] NIST. FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION: Secure Hash

Standard (SHS), August 2015.
[Tel07] Gerard Tell. Cryptography in context. 2007.


