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Abstract. This paper is intended to provide the necessary background in elliptic curves and
graph theory to understand the idea behind isogeny graph cryptography, specifically Supersin-
gular Isogeny Diffie-Hellman. It will not cover implementation details on each cryptographic
scheme nor proofs for most propositions and theorems, though a list references will be given
at the end of the paper. Much of the material is taken from De Feo’s “Mathematics of Isogeny
Based Cryptography,” an excellent paper describing elliptic curves, expander graphs, and sev-
eral isogeny based protocols. This paper is part of the Cryptography class of the 2019 fall
quarter at Euler Circle, and mainly serves to be another resource that the students can learn
from.

1. Elliptic Curves

Before we can talk about isogenies and doing cryptography on elliptic curves, we need to
first introduce elliptic curves.

Definition 1.1 (Weierstrass equation). An elliptic curve over a field k with characteristic
6= 2, 3 is the locus of an equation

y2 = x3 + ax+ b

where a and b is in k and 4a3 + 27b2 6= 0. This equation is called the Weierstrass equation.
We also include a point at infinity O. We will denote the set of points on the elliptic curve as
E(k).

The condition on a and b will prevent double roots and also guarantee that the j-invariant
of an elliptic curve is defined, which is an important characteristic of elliptic curves (See
definition 2.1).

Elliptic curves admit a group structure, which is best illustrated over Q. To add points P
and Q on the curve, find the intersection of the line through P and Q and the Weierstrass
equation (Eliminating y from the two equations gives us a cubic in x; we already have two
roots, which guarantees that the third root is in our field.) Reflecting that point over the
x-axis gives P +Q. If P = Q, we instead use the line tangent to the Weierstrass equation at
P . We will let O, our identity element, lie on every vertical line. That is, if P and Q have
the same x-coordinate, P +Q = O, and for all P , P +O = O + P = P .
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Figure 1. Adding points on E(Q). Image from Wikimedia Commons.

Because we have addition, we can do scalar multiplication by integers, which will be denoted
as [n] : P 7→ [n]P. One can explicitly find the formulas to do addition and multiplication (and
they are easy to compute), but we will not do so here.

Let’s try to understand the group structure on E(k). We can look at the torsion part (finite
order) and the free part (infinite order) of the group separately. The torsion part is easily
characterized:

Proposition 1.2 (m-torsion group). Let E be an elliptic curve defined over a field k, and let
m 6= 0 be an integer. The m-torsion group of E, denoted by E[m], is defined as

E[m] = {[m]P = O|P ∈ E(k)}.

It has the following structure:

• E[m] ' (Z/mZ)2 if the characteristic of k does not divide m.
• If p > 0 is the characteristic of k, then

E[pi] '

{
Z/piZ for any i ≥ 0, or

O for any i ≥ 0
.

Proof. See [Sil09, Cor 6.4]. �

For curves over fields of positive characteristic p, the case when E[p] ' Z/pZ is called
ordinary, while the case E[p] ' O is called supersingular. We will come back to those terms
later in the paper.

The free part of the group is more difficult to characterize. Currently we only know that
it is finitely generated, and we have some algorithms to compute the ranks of most elliptic
curves over number fields. However, we will not need these results in this paper.

2. Maps between elliptic curves

Proposition 2.1 (j-invariant). Let E : y2 = x3 + ax + b be an elliptic curve. Define the
j-invariant of E as

j(E) = 1728
4a3

4a3 + 27b2
.

Two curves are isomorphic over the algebraic closure k if and only if they have the same
j-invariant.
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Proof. The main idea is that E : y2 = x3 + ax + b and E ′ : y2 = x3 + a′x + b′ are isomorphic
if and only if there exists a c ∈ k such that

a′ = ac2 and b′ = bc3.

Note that c may not necessarily be in k, so we have to find c in the algebraic closure k. �

Definition 2.2 (isogeny). Let E1 and E2 be elliptic curves over k. An isogeny over k is a
surjective group morphism φ : E1 −→ E2 over k such that φ(OE1) = OE2 and that it is also an
rational map.

Rational maps require that the functions that send each coordinate in E1 to coordinates
in E2 is a ratio of polynomials in the coordinates of E1. We need this condition so that the
isogeny also respects the fact that elliptic curves are defined algebraically (i.e. are the zeros
of polynomials).

More generally, the degree of an isogeny is defined using category theory. However, we will
be mostly working with separable isogenies, and these have an easier notion of degree. The
definition of separability requires definitions about function fields from category theory, so we
omit its discussion here.

Proposition 2.3. Let φ be a separable isogeny. Then deg φ = # kerφ.

Proof. See [Sil09, Thm II.2.4]. �

Example. If E is an elliptic curve, and C ⊂ E is a finite subgroup, then E/C is also an elliptic
curve and the natural quotient map E → E/C is a (separable) isogeny. Then the degree of
the isogeny is #C.

If a isogeny has degree l, we will refer to it as an l-isogeny. It turns out that separable
isogenies are completely determined by their kernel:

Proposition 2.4. Let E be an elliptic curve, and let G be a finite subgroup of E. There is a
unique elliptic curve E0 and a unique separable isogeny φ, such that kerφ = G and φ : E � E0.

Proof. See [Sil09, Prop III.4.12]. �

We can have isogenies from E to itself; these are called endomorphisms (except for the
zero map, which is the only non-surjective endomorphism, sending everything to 0). One
important endomorphism is multiplication-by-m, denoted by

[m] : P 7→ [m]P.

Another important endomorphism that isn’t the multiplication map is the Frobenius endo-
morphism, which always exists in positive characteristic (base field Fp) and is defined by

π : (x, y) 7→ (xp, yp).

The set of endomorphisms under addition and composition form a ring.

Definition 2.5 (Endomorphism ring). Denote by End(E) the set of isogenies from E to E
defined over k, including the zero map; this is called the endomorphism ring of E.

A theorem due to Deuring characterizes all possibilities for the structure of the endomor-
phism ring, but first we need to define some terms from abstract algebra.
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Definition 2.6 (Q-algebra). A Q-algebra A is a vector space over Q equipped with a bilinear
product. More generally, we can have an k-algebra (or an algebra over a k) for any field k.
A is finitely generated if there is a finite subset of the algebra {e1, . . . , em} such that every

element in the algebra can be expressed as a polynomial in ei with coefficients in k.
The dimension is the dimension of A over k as a vector space: the smallest n such that there

exist independent basis elements e1, . . . , en ∈ A so that every element in A can be represented
as

∑
aiei for some ai ∈ k. Independent basis means that a smaller subset of the basis elements

cannot generate the remaining basis elements.

Example. Dimension in this context refers only to the vector space structure, not the algebra
structure. For example, Q( 3

√
2) is generated by 1 element as a Q-algebra, but is 3-dimensional

(as a vector space) over Q (generated by {1, 3
√

2, 3
√

4} as a Q-vector space). As another
example, the polynomial ring R[x] is finitely generated as an R-algebra (generated just by x),
but is an infinite-dimensional R-vector space.

Example. The field of complex numbers C is an algebra over R as every complex number can
be written as a + bi where a, b ∈ R, and complex multiplication (·) (the bilinear product)
satisfies for all x, y, z ∈ C and a, b ∈ R:

• Right distributivity: (x+ y) · z = x · z + y · z
• Left distributivity: z · (x+ y) = z · x+ z · y
• Compatibility with scalars: (ax) · (by) = (ab)(x · y).

Example. The field of quaternions H is a 4-dimensional algebra over R; the standard basis is
(1, i, j, k). Note that the complex numbers and quaternions are all finitely generated over R.

Definition 2.7 (Z-module). A Z-module is like a vector space over Z, except that a vector
space requires that the underlying set of scalars is a field, while a module only requires that
it is a ring. More generally, we can have an R-module where R is any ring.

Definition 2.8 (Order). Let A be a finitely generated Q-algebra. An order O ⊂ A is a
subring of A that is a finitely generated Z-module of maximal rank (the rank is basically the
equivalent of dimension for modules).

Example. Z[i] is an order in Q(i).

Example. Z[
√
−3] ⊂ Z[1+

√
−3

2
] are both orders in Q(

√
−3).

Theorem 2.9 (Deuring). Let E be an elliptic curve defined over a field k of characteristic p.
The ring End(E) is isomorphic to one of the following:

• Z, only if p = 0;
• An order O in an imaginary quadratic field (a field of the form Q

√
−D for D > 0);

in this case we say E has complex multiplication by O;
• Only if p > 0, a maximal order in the quaternion algebra ramified at p and ∞; in this

case we say that E is supersingular.

Proof. See [Sil09, Cor III.9.4]. �

For every elliptic curve, we have multiplication-by-m isogenies, so necessarily Z ⊂ End(E).
An elliptic curve in a positive characteristic always has the non-trivial Frobenius endomor-
phism, so Z[π] ⊂ End(E); hence, E must have complex multiplication. In a positive char-
acteristic, a curve that is not supersingular is called ordinary. Remember that finite fields
always have positive characteristic. As we won’t need ramification for our cryptography, we
will not define it here.
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Theorem 2.10 (Dual isogeny). Let φ : E −→ E ′ be an isogeny of degree m. There is a unique

isogeny φ̂ : E ′ −→ E such that

φ̂ ◦ φ = [m]E, φ ◦ φ̂ = [m]E′ .

φ̂ is called the dual isogeny of φ, where [m]E and [m]E′ refer to the multiplication-by-m isogeny
on E and E ′. It has the following properties:

(1) φ̂ is defined over k if and only if φ is;

(2) ψ̂ ◦ φ = φ̂ ◦ ψ̂ for any isogeny ψ : E ′ � E ′′;

(3) ψ̂ + φ = ψ̂ + φ̂ for any isogeny ψ : E ′ � E ′′;

(4) deg φ = deg φ̂;

(5)
ˆ̂
φ = φ.

Proof. See [Sil09, Thm III.6.1, Thm III.6.2]. �

The dual isogeny is kind of an inverse of an isogeny. However, isogenies have much weaker
conditions than isomorphisms. There can be isogenies between elliptic curves of different j-
invariants, and the isogeny composed with its dual isogeny does not give the identity map
over the elliptic curve, while an isomorphism composed with its inverse definitely does.

3. Graph Theory and Expander Graphs

We have covered a large portion of the background necessary to talk about isogenies, but
we still need to talk about graphs. The following are some definitions that the reader should
be familiar with.

Definition 3.1. An undirected graph G is a pair (V,E) where V is a finite set of vertices and
E ⊂ V ×V is a set of unordered pairs called edges. Two vertices v, v′ are said to be connected
if {v, v′} ∈ E. The neighbors of a vertex are all vertices in V connected to it by an edge. A
path between two vertices v and v′ is a sequence of vertices v −→ v1 −→ . . . −→ v′ such that
consecutive vertices are connected by an edge. The distance between two edges is the length
of the shortest path between them (If no path exists, the distance is infinite). A graph is
connected if any two vertices have a path connecting them; it is disconnected otherwise. The
diameter of a connected graph is the largest of all distances between its vertices. The degree
of a vertex is the number of edges pointing into (or from) it; a graph where every vertex has
degree k is called k-regular. The adjacency matrix of graph G with vertex set V = {v1, . . . vn}
is the n × n matrix where the (i, j)th entry is 1 if there is an edge between vi and vj, and 0
otherwise.

Because our graph is undirected, our adjacency matrix is symmetric. A general result is
that symmetric matrices have n real eigenvalues λ1 ≥ . . . ≥ λn. For k-regular graphs, we have
the following bound on the eigenvalues.

Proposition 3.2. If G is a k-regular graph with eigenvalues λ1 ≥ . . . ≥ λn, then

k = λ1 ≥ λn ≥ −k.

Proof. See [Tao11, Lem 2]. �

Definition 3.3 (Expander graph). Let ε > 0 and k ≥ 1. A k-regular graph is called a
(one-sided) ε-expander if

λ2 ≤ (1− ε)k;
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and a two-sided ε-expander if it also satisfies

λn ≥ −(1− ε)k.

Why do we care about expander graphs? It turns out that they have a lot of applications
in theoretical computer science due to their pseudo-randomness. What will be important for
us is that they have short diameter and rapidly mixing walks. The diameter is bounded by
O(log #V ), where the constant only depends on k and ε. Rapidly mixing means that any
sufficiently long random walk from a vertex will land you on any other node with close to
uniform probability (and the necessary length of the walk to guarantee this is relatively short).

Proposition 3.4 (Mixing theorem). Let G = (V,E) be a k-regular two-sided ε-expander. Let
F ⊂ V be any subset of the vertices of G, and let v be any vertex in V . Then a random walk
of length at least

log(#F 1/2/(2#V ))

log(1− ε)

starting from v will land in F with probability at least #F/(2#V ).

Proof. See [JMV09, Cor 1.3]. �

We will conclude this section with a result relating graphs of supersingular curves with
l-isogenies to Ramanujan graphs, which is a special type of expander graphs with greatest
possible difference λ1 −max(|λ2|, |λn|) by having max(|λ2|, |λn|) ≈ 2

√
k − 1.

Theorem 3.5 (All supersingular graphs are Ramanujan). Let p, l be distinct primes, then

(1) All supersingular j-invariants of curves in Fp are defined in Fp2;
(2) There are

b p
12
c+


0 if p = 1 (mod 12)

1 if p = 5, 7 (mod 12)

2 if p = 11 (mod 12)

isomorphism classes of supersingular elliptic curves over Fp;
(3) The graph of supersingular curves in Fp with l-isogenies is connected, l + 1 regular,

and has the Ramanujan property.

Proof. See [Sil09, Thm V.4.1] �

For the next theorem, an isogeny between E, E ′ is horizontal if End(E) ' End(E ′).

Theorem 3.6 (Graphs of horizontal isogenies are expanders). Let Fq be a finite field and
let O ⊂ Q[

√
−D] be an order in an imaginary quadratic field. Let G be the graph which

vertices are elliptic curves over Fq with complex multiplication by O, and which edges are
(horizontal) isogenies of prime degree bounded by (log q)2+δ for some fixed δ > 0. Assume that
G is nonempty. Then, under the generalized Riemann hypothesis, G is a regular graph and
there exists an ε, independent of O and q, such that G is a one-sided ε-expander.

Proof. See [JMV09]. �
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4. Isogeny graph problems

Definition 4.1. For any prime l 6= p, we can construct an isogeny graph, a multi-graph (we
allow multiple edges between two vertices and self-loops) in which nodes are the j-invariants of
isogenous curves and edges are isogenies of degree l between them. The dual isogeny theorem
implies that for every isogeny there is a corresponding reverse isogeny. For this reason, an
isogeny graph is usually drawn undirected.

The following problem is considered difficult, and the security of the protocols will rely on
the hardness of it.

Problem 4.2 (Isogeny path). Given two elliptic curves E,E ′ over a finite field K such that
#E = #E ′, find an isogeny φ : E � E ′ of smooth degree.

“Smooth degree” means that the degree has only small prime factors (usually we have a
bound B for the “smallness” we require). This problem is considered very difficult, and the
general method of attack is by having random walks from both E and E ′, and by the birthday
paradox, the paths are expected to meet after O

√
#G steps. Intuitively, a random walk is

like picking random points on the graph.

5. Hash functions and Diffie-Hellman

This section will introduce ideas of using random walks on expander graphs and isogeny
graphs to encrypt information. The mixing properties of expander graphs made them good
pseudo-random number generators, so they can be used to make very good hash functions.

Suppose that our graph was 3-regular and we have a binary string to encode. Start any
fixed vertex. At each step, read next bit of the string and use it to determine which of the
edges to traverse, avoiding the edge that goes back to the previous vertex. We also want to a
deterministic way to do choose the edges at each step, so when we actually do random walks
on isogeny graphs, we’ll have to be selective about which isogenies we allow as edges.

Figure 2. Hashing the string 010101 using
an expander graph. Image from [Feo17].

We can describe a prototypical protocol of Diffie-Hellman using random walks. Say we
have a cyclic graph generated by g with order p i.e. G = 〈g〉. The group (Z/pZ)× acts on
G: we have p − 1 bijections from G to G, namely taking every element to the ith power for
1 ≤ i ≤ p− 1.

We need to choose our bijections careful so that we can determine which edge to take when
traversing our graph. Create the set D ⊂ (Z/pZ)× so that σ ∈ D =⇒ σ−1 6∈ D. This will be
our “forward” direction for the random walk. The “backward” direction will be D−1, the set
of all inverses of elements in D.

If ρ is a directed route, write ρ(g) for the vertex defined by ρ and starting vertex g. If ρ is
a route of length m

ρ = (σ1, . . . , σm)
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then

ρ(g) = g
∏
σi .

Hence, any two routes ρA, ρB commute. This allows for a Diffie-Hellman exchange:

• Public information:
– A group G of prime order p,
– A generating set D ⊂ (Z/pZ)×

– A generating g of G.
• Alice and Bob each pick a secret route ρA and ρB.
• Alice computes gA = ρA(g) and sends it to Bob.
• Bob computes gB = ρB(g) and sends it to Alice.
• Shared secret: gAB = ρA(gB) = ρB(gA).

The Diffie-Hellman procedure can be carried out on graphs of horizontal isogenies over
elliptic curves with complex multiplication. There are a few technicalities with how to pick
the edges (we need to pick a list of primes that split over Z[π]), but following through with
this idea gives the Rostovtsev-Stolbunov protocol. However, the protocol is slow as Alice and
Bob must keep track of a large number of primes. Furthermore, because there is an abelian
group action on our graph (the class group), the protocol may be vulnerable against quantum
attacks by solving the discrete logarithm problem over the group action. Childs, Jao, and
Soukharev [CJS14] have shown how to adapt quantum algorithms to solve the ordinary isogeny
path problem in subexponential time. While this does not completely break the protocol, it
seems less plausible as a security system that should be implemented in practice.

6. Supersingular Isogeny Key Exchange

We’ve looked at isogeny graphs on ordinary graphs, which have elliptic curves with endo-
morphism rings isomorphic to orders in imaginary quadratic fields Q

√
−D. Now we look at

supersingular graphs, which have elliptic curves endomorphism rings isomorphic to orders in
quaternion algebras.

One reason that a key exchange protocol on supersingular curves is that the endomorphism
ring of supersingular curves are non-abelian, so current quantum attacks on Diffie-Hellman
do not break the protocol.

The main idea of the Supersingular Isogeny Diffie-Hellman protocol (SIDH) is to let Alice
and Bob take random walks in two different isogeny graphs on the same vertex set. We choose
a large prime p and small primes lA and lB. Alice’s graph is made of degree lA isogenies, while
Bob uses lB-isogenies. The vertex set will be the j-invariants of supersingular curves defined
over Fp2 .

Taking a random walk in a deterministic way is difficult because there is no canonical
way to label the edges. Instead, we can use the fact that separable isogenies are completely
determined by their kernel and deg φ = # kerφ. In addition, the degree of a composition of
separable isogenies is just the product of the degrees of each isogeny. Hence, a walk of length
eA in the lA-isogeny graph corresponds to a kernel of size leAA , and this kernel is cyclic if and
only if the walk does not backtrack. Notes that separability is preserved over composition, so
the kernel uniquely defines the final isogeny.

Hence, Alice taking a random walk of length eA is equivalent to her picking a random
subgroup 〈A〉 ⊂ E[leAA ]; similarly Bob picks his random subgroup 〈B〉 ⊂ E[leBB ]. Then there is
a well-defined subgroup 〈A〉+ 〈B〉 = 〈A,B〉 that defines the isogeny to E/〈A,B〉. As lA 6= lB,
the group 〈A,B, 〉 is cyclic of order leAA l

eB
B .
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The following theorem allows us to control the group structure of the curve

Theorem 6.1 (Group structure of supersingular curves). Let p be a prime, and let E be a
supersingular curve defined over a finite field Fq with q = pm elements. Let t be the trace of
the Frobenius endomorphism of E/k, then one of the following is true:

• m is odd and
– t = 0, or
– p = 2 and t2 = 2q, or
– p = 3 and t2 = 3q;

• m is even and
– t2 = 4q, or
– t2 = q, and j(E) = 0, and E is not isomorphic to y2 = x3 ± 1, or
– t2 = 0, and j(E) = 1728, and E is not isomorphic to y2 = x3 ± x.

The group structure of E(Fq) is one of the following:
• If t2 = q, 2q, 3q, then E(Fq) is cyclic;
• If t = 0, then E(Fq) is either cyclic, or isomorphic to Z/ q+1

2
Z⊕ Z/2Z;

• If t = ∓2
√
q, then E(Fq) ' (Z/(√q ± 1)Z)2.

Proof. See [MOV93]. �

We’re only interested in the case when q = p2 and E(Fq) ' (Z/(p± 1)Z)2. We can choose
our p so that E(Fq) contains two large subgroups E(Fq)[l

eA
A ] and E(Fq)[leBB ] of coprime order

by letting p = leAA l
eB
B f ∓ 1, where f is a small cofactor. Hence, we can choose our generator

A and B to be in E(Fq) and not some other field extension, and one generator is sufficient to
represent an isogeny walk of length eA. Now we have an elliptic curve with

E(Fp2) ' (Z/leAA Z)2 ⊕ (Z/leBB Z)2 ⊕ (Z/fZ)2.

Then E(Fp2)[leAA ] ' (Z/leAA Z)2, so we need two elements in Z/leAA Z for a basis of E(Fp2)[leAA ].
For convenience, this is made public for each isogeny graphs

E[leAA ] = 〈PA, QA〉,

E[leBB ] = 〈PB, QB〉.
To start, Alice and Bob choose random secret subgroups

〈A〉 = 〈[mA]PA + [nA]QA〉 ⊂ E[leAA ],

〈B〉 = 〈[mB]PB + [nB]QB〉 ⊂ E[leBB ].

with respective orders leAA , leBB , and compute the secret isogenies

α : E � E/〈A〉,

β : E � E/〈B〉.
They now publish EA = E/〈A〉 and EB = E/〈B〉. Note that for 〈A〉 to have order leAA , either
mA or nA must be coprime to lA.

In order for Alice to compute E/〈A,B〉, she must compute the isogeny α′ : E/〈B〉 �
E/〈A,B〉, which kernel is generated by β(A). Then Bob can publish the values β(PA) and
β(QA) to help Alice. It is thought that this information does not give any advantage in
computing E/〈A,B〉. The shared secret is the j-invariant of E/〈A,B〉, which Alice computes
using EAB = EB/〈β(A)〉 and Bob using EBA = EA/〈α(B)〉; the j-invariants of those curves
are the same.



10 TAE KYU KIM

The following proposition summarizes the described procedure for supersingular key ex-
change.

Proposition 6.2 (Supersingular Isogeny Diffie-Hellman (SIDH)). The following procedure on
an isogeny graph allows for a Diffie-Hellman key exchange between parties A and B.

(1) Public parameters:
• Primes lA, lB, and prime p = leAA l

eB
B f ∓ 1,

• A supersingular curve E over Fp2 of order (p± 1)2,
• A basis 〈PA, QA〉 of E[leAA ],
• A basis 〈PB, QB〉 of E[leBB ].

(2) Pick a random secret:
• A = [mA]PA + [nA]QA,
• B = [mB]PB + [nB]QB.

(3) Compute secret isogeny
• α : E � EA = E/〈A〉,
• β : E � EB = E/〈B〉.

(4) Exchange data
• Alice sends EA, α(PB), α(QB),
• Bob sends EB, β(PA), β(QA).

(5) Compute shared secret
• EAB = EB/〈β(A)〉,
• EBA = EA/〈α(B)〉,
• j(EAB) = j(EBA).

We end this section with a discussion on the theoretical security of this protocol. To prevent
either Alice or Bob’s public keys from being weaker, we want to have leAA ≈ leBB . Theorem 3.5
(2) tells us that the size of our graph is O(p), then Alice’s public key space is O(

√
p). This

means that Alice and Bob’s random walks are much shorter than the diameter of the graph.
However, it is not known whether this poses a weakness in the security of the protocol.

A classical attack involves taking random walks of length l
eA/2
A from the start and end curves

to obtain a meet-in-the-middle attack of runtime O( 4
√
p). This is the solution to Problem 4.2

of finding smooth isogenies between two curves. According to [Feo17], the fastest known
quantum-attack is O( 6

√
p).
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