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Abstract. In this paper, we will cover background related to class groups of quadratic
fields and explore how they can be used as the basis for cryptosystems. We then describe the
discrete logarithm problem in class groups of imaginary quadratic fields and what conditions
on the discriminant are required for the problem to be intractable. This paper assumes
basic knowledge of abstract algebra and cryptography, and is dedicated to Kevin Xu for his
excellent moral support.

1. Background

We begin by defining several key terms relating to fields.

Definition 1.1. A field extension of a field K is a field E of which K is a subfield (i.e. a
subset of E which is a field under the operations in E restricted to K). We write K ⊆ E
when E is a field extension of K.

Example. Q(i) = {a+ bi : a, b ∈ Q} is a field extension of the field of rational numbers of Q.

Note that a field extension can be considered a vector space over K. Considering this way
of viewing a field extension, we can then define a measure of how ”large” the field is:

Definition 1.2. The degree [E : K] of a field extension E of a field K is its dimension as
a vector space over K.

Example. For our previous example, [Q(i) : Q] = 2 because {1, i} is a basis for Q(i) and has
cardinality 2.

In this paper, we will consider number fields, which are defined as follows:

Definition 1.3. An algebraic number field, or number field, is a finite degree field
extension of Q.

Example. Some of the most common examples of number fields are Q itself and the quadratic
field Q(

√
d) = a

√
d+ b : a, b ∈ Q where d is squarefree.

We will build the class group from structures called ideals:

Definition 1.4. An ideal of a ring R is a subgroup I of (R,+) such that for all y ∈ R,
x ∈ I =⇒ xy, yx ∈ I.

Example. Taking our ring R to be Z, let I = k Z, where k is a prime. We can see that I is
a group under addition and is therefore a subgroup of (Z,+), and we can see that I is an
ideal as well because for all n ∈ Z, kn = nk is a multiple of k and is therefore in I.

Definition 1.5. For a domain R, define an equivalence relation on R×(R\{0}) as (x1, y1) ∼
(x2, y2) iff x1y2 = x2y1. The set of equivalence classes is a field and is called the field of
fractions or quotient field.
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Example. The definition of the field of fractions is a generalization of the rational numbers;
we can see that the field of fractions of Z is Q.

Conversely, for an algebraic number field K, we can define its ring of integers:

Definition 1.6. Let a be an element of a number field K. Its minimal monic polynomial
over Q is the monic polynomial of minimal degree with coefficients in Q, with a as a root.

Example. Let K be any number field, and let a ∈ Z. The minimal monic polynomial of a is
x− a.

Example. Let K = Q(i), and let a = 2i + 3. Its minimal monic polynomial over Q is
(x−a)(x−a) = (x− (2i+3))(x− (−2i+3)) = x2−6x+13, since it has rational coefficients.

Definition 1.7. An element a of a number field K is called integral if its minimal monic
polynomial over Q has coefficients in Z. We then call the ring of integral elements the ring
of integers of K, denoted by OK .

Example. An integer is always an integral element; note that this means that Z is always a
subring of OK .

Example. In the example above, withK = Q(i) and a = 2i+3, the minimal monic polynomial
over Q has integer coefficients, so it is integral. However, b = i

2
is not an integral element

since its minimal monic polynomial (x− b)(x− b) = (x− i
2
)(x+ i

2
) = x2 + 1

4
does not have

integer coefficients.

Remark 1.8. In this paper, we will focus on the case where K is an imaginary quadratic
field, a number field of the form Q(

√
d) with d < 0, d ≡ 0, 1 (mod 4), and d squarefree. The

ring of integers of K is called an imaginary quadratic order.

Definition 1.9. A fractional ideal of a domain R is a subset of its quotient field Q of the
form I/c = {a

c
: a ∈ I} where I is an ideal of R and c ∈ R, c 6= 0.

Definition 1.10. We say an ideal I of a ring R is generated by a subset S of R if I is
the smallest ideal of R that contains S. A principal ideal is an ideal generated by a single
element.

Example. Every ideal in Z is a principal ideal, and is generated by a unique nonnegative
integer.

In order to put a group structure on the set of fractional ideals, we define a product of
ideals:

Definition 1.11. For ideals I and J , define its product IJ = {
∑n

i=1 aibi : n ∈ Z, ai ∈
I, bi ∈ J}.

Note that the entire ring R is the identity; and for any integral domain R, not all nonzero
fractional ideals are invertible with respect to this product, i.e. for an ideal I, there does
not always exist an ideal J such that IJ = R.

Definition 1.12. Integral domains (that are not fields) with the property that all nonzero
fractional ideals are invertible are called Dedekind domains.

Remark 1.13. Note that there are many equivalent definitions of a Dedekind domain; the
most common definition is related to unique factorization of ideals.
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Proposition 1.14. The ring of integers of a number field is always a Dedekind domain.

We refer the reader to [Ste04, Proposition 6.1.4] for a proof.
The set of fractional ideals forms a group under this product, and the set of principal

fractional ideals forms a subgroup.

Definition 1.15. Let K be a field, and let JK and PK denote the group of fractional ideals
and its subgroup of principal fractional ideals respectively. Then, we define the ideal class
group, or class group as the quotient group

CK =
JK
PK

.

The class number is the order of the class group.

2. Class Groups of Imaginary Quadratic Fields

In this section, we will characterize the structures defined above in the case of imaginary
quadratic fields.

An important quantity describing a number field is its discriminant; when the number
field is an quadratic number field, we define it as follows:

Definition 2.1. Let d be a squarefree integer (note that d ≡ 1, 2, 3 (mod 4)); then K = Q(d)
is a quadratic field. We define the discriminant of the field as

∆ =

{
d d ≡ 1 (mod 4)

4d d ≡ 2, 3 (mod 4)
.

Conversely, we can identify integers that are the discriminant of some quadratic field; we
call these integers fundamental discriminants:

Definition 2.2. A fundamental discriminant d is an integer satisfying one of the follow-
ing conditions:

(1) d ≡ 1 (mod 4), d squarefree
(2) d = 4m, m ≡ 2, 3 (mod 4), m squarefree

We then describe the ring of integers of quadratic fields:

Proposition 2.3. For a squarefree integer d, the ring of integers of the quadratic field Q(
√
d)

are Z[g], where

g =

{
1+
√
d

2
d ≡ 1 (mod 4)√

d d ≡ 2, 3 (mod 4)

or equivalently, g = ∆+
√

∆
2

, where ∆ is the discriminant.

Proof. For an element a + b
√
d ∈ Q(

√
d), its minimal monic polynomial over Q is (x− a−

b
√
d)(x− a+ b

√
d) = x2 + (2a)x+ (a2− db2). Write a and b as a1

a2
and b1

b2
respectively, where

gcd(a1, a2) = gcd(b1, b2) = 1. For a + b
√
d to be integral, 2a and a2 + db2 must be integers.

Therefore, a2 = 1 or 2.
If a2 = 1, then db2 ∈ Z, so b ∈ Z as well since d is squarefree.

It a2 = 2, then
a21
4
− db21

b22
=

a21b
2
2−4db21
4b22

∈ Z. Then, a2
1b

2
2 − 4db2

1 ≡ 0 (mod 4), so a2
1b

2
2 − 4db2

1 ≡
a2

1b
2
2 ≡ b2

2 ≡ 0 (mod 4), since a1 is relatively prime to a2. We also have a2
1b

2
2 − 4db2

1 ≡ 0
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(mod b2
2), so a2

1b
2
2 − 4db2

1 ≡ 4db2
1 ≡ 4 ≡ 0 (mod b2

2), since b1 is relatively prime to b2. Thus,
b2 = 2.

Substituting this into
a21
4
− db21

b22
, we know that 4 must divide a2

1− db2
1. Squares can only be

0 or 1 mod 4, so we can only have odd values of a1 and b1 if d ≡ 1 (mod 4). Thus, the ring

of integers is Z[g], where g =

{
1+
√
d

2
d ≡ 1 (mod 4)√

d d ≡ 2, 3 (mod 4)
.

Note that we can also take g = ∆+
√

∆
2

where ∆ is the discriminant, since ∆ is odd iff d ≡ 1
mod 4. �

We can then see, from our definition of an ideal, that the ideals in quadratic orders will
take on the following form:

Proposition 2.4. Let d be a squarefree integer congruent to 0 or 1 (mod 4), and let O(d)
denote the quadratic order of discriminant d. Then, each fractional ideal of O(d) is of the
form

I = q

(
aZ+

b+
√
d

2
Z

)
where q ∈ Q+, a ∈ Z+, and b ∈ Z. Furthermore, q and a are unique, and b is unique mod
2a.

We write an equivalence class of Cl(O) as [a, b], since fractional ideals with different values
of q are in the same ideal class.

3. The Discrete Logarithm Problem

Let d be a squarefree fundamental discriminant with d < 0, let O denote the corresponding
imaginary quadratic order, and let Cl(O) denote the class group of O. Compute h = gk,
where g is a random element of Cl(O) and k is a random integer chosen between 0 and 2t

with t ≥ 160.

Question 3.1. Given h and g, find dlogg(h), which we define as the minimal integer k such

that h = gk.

We will discuss the conditions we require for the DLP to be intractable, and how intractable
it is compared to the integer factorization problem; more generally, we want to ensure that
it is difficult to determine the order of the group (thus making it more difficult to determine
the order of certain elements). We first introduce the L-notation, which is an asymptotic
notation that tells us how complex an algorithm:

Definition 3.2. Let n be an increasing variable, let α be a constant with 0 ≤ α ≤ 1, and
let c be a positive constant. We define Ln[α, c] as

e(c+o(1))(lnn)α(ln lnn)1−α

Example. A special case of this notation is when α = 0 or α = 1. If α = 0, then

Ln[α, c] = e(c+o(1))(lnn)α(ln lnn)1−α = e(c+o(1))(ln lnn) = (lnn)c+o(1)

If α = 1, then

Ln[α, c] = e(c+o(1))(lnn)α(ln lnn)1−α = e(c+o(1))(lnn) = nc+o(1)
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Note that if α = 1, then the function Ln[α, c] is a polynomial in n, while it is subexponential
otherwise, i.e. it is much larger than a polynomial function, but still much smaller than an
exponential function.

We also note that for larger values of c and α, we get larger values of Ln[α, c].
In terms of this notation, index calculus algorithms developed to solve the Discrete Log-

arithm Problem in class groups (Cl-DLP) have a running time proportional to L|∆|[
1
2
, 3

4

√
2]

under GRH, as proved in [Vol00]. A variant of the Quadratic Sieve, developed by Jacob-
son [Jac99], is expected to have a running time proportional to L|∆|[

1
2
, 1 + o(1)] based on

empirical data. On the other hand, the best known integer factorization algorithm, the Gen-
eral Number Field Sieve (GNFS), has a running time proportional to Ln[1

3
, (64

9
)
1
3 ]; we refer

the reader to [Pom96] for an explanation of this algorithm and heuristics for its runtime. It
is known that Cl-DLP is at least as hard as IFP, but we are currently unsure of whether it
is actually harder.

4. Factorization in Dedekind Domains

In order to discuss Jacobson’s Quadratic Sieve method, we first cover background related
to factorization in Dedekind domains. We start by defining a prime ideal:

Definition 4.1. An ideal P in a ring R is a prime ideal if

(i) For elements a, b ∈ R, ab ∈ P =⇒ a ∈ P or b ∈ P .
(ii) P is not the entire ring R.

Example. If we take R = Z, then an ideal nZ is a prime ideal iff n is prime.

As mentioned before, the standard definition of a Dedekind domain is about factorization
into prime ideals:

Definition 4.2. A nonzero commutative ring is a Dedekind domain if the following two
hold:

(i) It is an integral domain, i.e. the product of any two nonzero elements is also
nonzero.

(ii) Every nonzero ideal that is not the whole ring factors into a product of prime ideals.

Example. Recall that the ring of integers of every number field is a Dedekind domain.

In fact, we can show the following about Dedekind domains:

Theorem 4.3. Let I be a nonzero ideal of the ring of integers of a number field OK. Then,
the prime factorization of I into prime ideals is unique up to order.

See [Ste04, Theorem 6.1.9] for a proof.

We now address the question of how to factor any ideal of the form a = aZ+ b+
√

∆
2

Z. Our
goal is to construct a mapping N from the set of ideals to Z, so that we can factor an ideal
I using the prime factorization of N(I):

Definition 4.4. Let I be an ideal of OK , where K is a number field. Then, the norm of I
is N(I) = [OK : I].

Example. Taking K = Q (and thus OK = Z, the norm of an ideal of the form nZ is n.

The following theorem relates the norm of an ideal to its factorization into prime ideals:
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Theorem 4.5. Let a = aZ+ b+
√

∆
2

Z, and suppose the norm N(a) has prime factorization

N(a) =
∏
p|N(a)

pt(p).

Define p(p) = pZ+ bp+
√

∆

2
Z, where bp satisfies 0 ≤ bp ≤ p and b2

p ≡ ∆ (mod 4p), and
e(p) ∈ −1, 1 Then, the prime factorization of a is∏

p|N(a)

p(p)e(p)t(p)

We omit the proof, as it is beyond the scope of this paper.

5. Jacobson’s Quadratic Sieve Method

We will now provide an overview of the variants of the Quadratic Sieve developed to
compute the structure of the class groups and discrete logarithms; see [JJ99] for a more
thorough treatment.

Recall that in the Quadratic Sieve, we attempt to find a pair (x, y) such that x2 ≡ y2

(mod n); in the Multiple Polynomial Quadratic Sieve, which is a variant of this algorithm,
we use multiple of polynomials of the form y = (Ax + B)2 − n2 (which has similar form to
the original polynomial y = x2−n), running the algorithm on all of these to find (x, y) pairs
more quickly. This is useful because it is ideal for parallelization: each processor is given a
subset of the polynomials, and separately runs the algorithm.

We first compute a factor base FB of prime ideals such that a subset will generate the
class group Cl(∆). We have the following theorem by Bach [Bac90]:

Theorem 5.1. Assuming the Extended Riemann Hypothesis, the generating set of a class
group of a field with discriminant ∆ has prime ideal with largest norm at most 12 log2 |∆|.
If ∆ is a fundamental discriminant of a quadratic field, then this bound can be improved to
6 log2 |∆|.

Note that instead of checking up to this bound, we can optimize the algorithm by allowing
for a smaller factor base: see [JJ99] for more details.

The key idea in the algorithm is the generation of relations, which we define to be a vector
v = (v1, v2, . . . vk) such that OK is equivalent to

∏
p∈FB pvi . To generate a relation, we use

the theory of quadratic forms:

Definition 5.2. A quadratic form Q over a ring R is a polynomial

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj

where each term has degree 2 and the coefficients aij lie in R.

Example. 3x2 + 2xy + 5y2 is a binary quadratic form, i.e. one in two variables.

Definition 5.3. The discriminant of a binary quadratic form ax2 + bxy + cy2 is b2 − 4ac.

Example. The discriminant of 3x2 + 2xy + 5y2 is 22 − 3 ∗ 5 = −11.

There is a correspondence between quadratic forms with discriminant ∆ and ideals of an
imaginary quadratic field with discriminant ∆: we map the ideal a = (a, b) to the quadratic

form ax2+bxy+cy2, where c = b2−∆
4a

since we need the quadratic form to have discriminant ∆.
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So, we start with an ideal a = (a, b) which is smooth over our factor base. This corresponds

to ax2 + bxy + cy2, where we take c = b2−∆
4a

as before. We then construct another ideal a′

which is equivalent to a, so aa′−1 is equivalent to OK , yielding a relation. We do this with
the following proposition:

Proposition 5.4. Let Q(x, y) = ax2 + bxy+ cy2 be a quadratic form over Z. Then, if there
exists integers x0, y0 such that Q(x0, y0) = a′ for some integer a′, then there exists some b′, c′

such that the quadratic form a′x2 + b′xy + c′y2 is equivalent to Q.

where we define an equivalence relation for quadratic forms as follows:

Definition 5.5. Two forms Q1,Q2 are equivalent over a ring R if there exists an invertible
matrix M with entries in R such that for all vectors ~x with entries in R, Q1(M~x) = Q2(~x).

Since we want a′ to be smooth over our factor base of prime ideals as well, we find pairs
(x, y) such that ax2 + bxy + cy2 is smooth. As we would do in the integer factorization
quadratic sieve, we then sieve over the quadratic form ax2 + bx+ c, where we set y = 1.

6. Smooth Class Numbers

For Cl-DLP to be intractable, the class number h(∆) should not be smooth.
Suppose we are trying to compute discrete logarithms of an element of Cl(∆), γ. Set

α = γ, and for each prime pi less than a smoothness bound B, compute αi = α
p
e(pi,B)
i
i−1 , where

e(pi, B) is some function of pi and B (for example, we can take e(pi, B) = blogpi Bc).
This algorithm is very similar to the p−1 factorization algorithm used to factor a number

N with a prime factor p such that p− 1 is smooth, where we set a0 = 2blog2Nc (mod N) and

then compute ai = a
p
blogpi Nc
i
i−1 ( mod N).

The difference here is that we do not know the number N that we are trying to factor, so
instead of trying to find a prime factor right away from this sequence, we want these values
to eventually reach the identity, 1Cl(∆).

If this succeeds and the sequence eventually reaches the identity, then let i be the integer
satisfying αi−1 6= 1Cl(∆) and αi = 1Cl(∆), i.e. the first integer in the sequence that is the
identity. Then, we know that pi must be a prime factor of the order of γ, denoted ordCl(∆) γ;
in fact, we can see that it must be the largest prime factor.

We can then set γ′ = γp
e(pi,B)
i , and repeat the process; in this way, we compute the

second largest prime factor of ordCl(∆) γ. Eventually, we obtain the full prime factorization
of ordCl(∆) γ. Recall that if the order of an element is smooth, we can easily compute discrete
logarithms of that element using the Pohlig-Hellman algorithm.

7. A Heuristic For Smooth Class Numbers

We already know how to control the even part of the class number, v2(h(∆)). One way to
do this, as suggested in [HM00], is to select ∆ one of the following ways:

(1) ∆ = −p, where p is a prime with p ≡ 3 (mod 4)

(2) ∆ = −8pq, where p ≡ 1 (mod 8), p+ q ≡ 8 (mod 16), and
(
p
q

)
= −1.

If we choose the discriminant this way, then we can explicitly describe the even part [Kap73]:

Proposition 7.1 (Kaplan). In the first case, h(∆) is odd; in the second case, v2(h(∆)) = 3.
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However, we cannot do the same for odd primes, so our strategy will be to pick a discrimi-
nant ∆ large enough so that the probability that h(∆) is smooth will be very small. In order
to estimate this probability, we use heuristics developed by Hamdy and Möller in [HM00].
Let Pr(E) denote the probability of an event happening; our goal is to estimate Pr(pi | h(∆))
for a positive integer i and an odd prime p. Cohen and Lenstra give heuristics for the case
i = 1 in [CL84]:

Conjecture 7.2 (Cohen–Lenstra). As ∆→ −∞, Pr(p | h(∆)) is approximately

1−
∞∏
j=1

(
1− 1

pj

)
For i ≥ 2, Buell conjectured the following based on statistics of class numbers [Bue84]:

Conjecture 7.3 (Buell). As ∆→ −∞, Pr(pi | h(∆)) is approximately

1

pi
+

1

pi+1
=

1 + 1
p

pi

So by these conjectures, we assume that Pr(pi | h(∆) ≤ 1+ 1
p

pi
.

On the other hand, if x is just any randomly chosen integer from some interval, Pr(pi | x)
is about 1

pi
. Thus, by our assumptions, the ratio of these two probabilities is

Pr(pi | h(∆))

Pr(pi | x)
≤ 1 +

1

p

so we should expect class numbers to be smooth with higher probability than randomly
chosen integers. However, we would like more specific heuristics on how significant this
difference is.

Assume the probabilities Pr(pi | h(∆)) are independent to each other; then, if we factor
some smooth odd integer k as

∏
p|k p

ep(k), then we have

Pr(k | h(∆))

Pr(k | x)
=

∏
p|k Pr(pep(k) | h(∆))∏
p|k Pr(pep(k) | x)

=
∏
p|k

Pr(pep(k) | h(∆))

Pr(pep(k) | x)
≤
∏
p|k

(
1 +

1

p

)
8. Heuristic Bounds for the Ratio of Smoothness Probabilities

Let Fk be the product
∏

p|k

(
1 + 1

p

)
above. We aim to find an upper bound for Fk, to

determine how large this ratio can become.
In order to do this, we refer to the following result by Brauer and Siegel [Bra47]:

Theorem 8.1 (Brauer–Siegel). As |∆| → ∞, we have

log(h(∆)) ∼ log(
√
|∆|).

Remark 8.2. Brauer actually proved a more general theorem formulated by Siegel for number
fields of degree n; the result stated above is the more simple case of n = 2.

Based on this theorem, the maximum should occur around
√
|∆|, and we can see that in

order for Fk to be large, k should be a product of many small primes, so we set k =
∏

p<t p;
this is called a primorial. We have the following asymptotic for primorials, which is a corollary
of the Prime Number Theorem:
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Theorem 8.3 (Prime Number Theorem). Let π(x) be the prime counting function
∑

p≤x 1.
Then,

π(x) =
x

log x
+ o

(
x

log x

)
.

Corollary 8.4. For n ∈ Z, let P (n) be the product
∏

p<n p. Then, P (n) = e(1+o(1))(n).

Proof. Let ϑ(x) =
∑

p≤x log p. Then, we claim that ϑ(x) = x+ o(x). To prove that this is a
corollary of the Prime Number Theory, called Abel Summation:

Lemma 8.5. Let a1, a2, . . . be a sequence of complex numbers, and define A(x) =
∑

1≤n≤x an.
Let φ : [1, x] → R. be a differentiable function with a continuous derivative. Then, for all
x > 1, we have ∑

1≤n≤x

anφ(n) = A(x)φ(x)−
∫ x

1

A(u)φ′(u)du

.

Proof. Since A(x) = A(bxc), we break up the integral as follows so we can separate out that
term from the integral:

A(x)φ(x)−
∫ x

1

A(u)φ′(u)du = A(x)φ(x)−
bxc−1∑
i=1

∫ i+1

i

A(u)φ′(u)du−
∫ x

bxc
A(u)φ′(u)du

From i to i + 1, A(u) = A(i), and A(x) = A(bxc), so we can pull those terms out from the
integral and evaluate the integral:

= A(x)φ(x)−
bxc−1∑
i=1

A(i)

∫ i+1

i

φ′(u)du− A(x)

∫ x

bxc
φ′(u)du

= A(x)φ(x)−
bxc−1∑
i=1

A(i)(φ(i+ 1)− φ(i))− A(x)(φ(x)− φ(bxc)

The A(x)φ(x) terms cancel, and we switch the φ(i+1) and φ(i) terms to get rid of the minus
sign in front of the summation:

=

bxc−1∑
i=1

A(i)(φ(i)− φ(i+ 1)) + A(x)φ(bxc)

Expanding the A(i) and A(x) terms yields

=

bxc−1∑
i=1

(φ(i)− φ(i+ 1))
i∑

j=1

aj +

bxc∑
i=1

aiφ(bxc)

We now switch the order of the double summations: before, we had i ranging from 1 to
bxc − 1, and j ranging from 1 to i, so that i ≥ j. Thus, if we have j ranging from 1 to
bxc − 1, i will range from j to bxc − 1:

=

bxc−1∑
j=1

aj

bxc−1∑
i=j

(φ(i)− φ(i+ 1)) +

bxc∑
i=1

aiφ(bxc)
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We can see that all of the terms in
∑bxc−1

i=j (φ(i) − φ(i + 1)) will cancel out except for the

endpoints, so this expression will simplify to φ(j)− φ(bxc):

=

bxc−1∑
j=1

ajφ(j)−
bxc−1∑
j=1

ajφ(bxc) +

bxc∑
i=1

aiφ(bxc)

In the difference of the second and third terms, all terms will cancel out except for abxcφ(bxc);
absorbing this term into the first summation yields

∑bxc
i=1 aiφ(i) as desired. �

Now, let ai = 1 if i is prime, and 0 otherwise, so that A(x) = π(x). Then, ϑ(x) =∑
p≤x log p =

∑
1≤n≤x an log(n). Applying Abel summation,

ϑ(x) = π(x) log(x)−
∫ x

1

π(u)
1

u
du

Substituting π(x) = x
log x

+ o( x
log x

by the Prime Number Theorem yields

= x+ o(x)−
∫ x

1

(
1

log u
+ o

(
1

log u

))
du

= x+ o(x)

since the integral is positive. Thus since P (n) = eϑ(n), P (n) = e(1+o(1))(n). �

Thus, for our maximum, the quantities t, log k, and log
√
|∆| will be approximately equal

to each other. We have ∏
p<t

(
1 +

1

p

)
≈

∏
p<log
√
|∆|

(
1 +

1

p

)
To approximate this product, we use Merten’s theorem, which is an asymptotic for a similar
product:

Theorem 8.6 (Mertens). Let x be a positive integer. Then,∏
p<x

(
1− 1

p

)
=

1

eγ log x
+O

(
1

log2 x

)
where γ is the Euler-Mascheroni constant.

We can write our product as

∏
p<log
√
|∆|

(
1 +

1

p

)
=

∏
p<log
√
|∆|

(
1− 1

p2

)
∏

p<log
√
|∆|

(
1− 1

p

)

=

∏
p<log
√
|∆|

(
1− 1

p2

)
1

eγ log log
√
|∆|

+O

(
1

log2 log
√
|∆|

)
Now, we approximate both the numerator and denominator. If we let the product in the

numerator range over all primes instead of cut off at log
√
|∆|, and took the inverse, we

would have
∏

p prime
1

1− 1
p2

=
∏

pprime(1 + 1
p2

+ 1
p4

+ · · · ). Because of unique factorization in

the integers, if we expanded this out, every term would be of the form 1
n2 , and there would
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be one of these terms for every integer. This sum
∑∞

n=1
1
n2 is the zeta function ζ(2), and it

is well known that this sum converges, and is equal to π2

6
. Thus, we can approximate the

numerator as 6
π2 .

The denominator is the quantity approximated in Merten’s theorem, so it is close to

1

eγ log(log
√
|∆|)

since the error term O

(
1

log2(log(
√
|∆|))

)
approaches 0 as ∆ tends to infinity.

Putting this together, we get log log
√
|∆| as our final approximation. Using this, we can

then find bounds on how large ∆ should be, based on how small we want Pr(h(∆) is smooth)
to be. Hamdy and Möller suggest |∆| = 22B2u if we choose the class number to be odd, and
|∆| = 28B2u if we choose the class number to be even [HM00].

9. Further Questions

The cryptosystems discussed here have a security level comparable to that of RSA, al-
though they are still vulnerable to quantum attacks. However, cryptosystems based on
imaginary quadratic orders are relatively new, and there is still further work to be done on
them. We are still unsure of whether the Discrete Logarithm Problem in Imaginary Qua-
dratic Orders is harder than the Integer Factorization Problem, and if there exists a general
number field variant of Jacobson’s Quadratic Sieve method that is analogous to the Number
Field Sieve for integer factorization.

Additionally, there have been proposed generalizations to general number fields, such as
Buchmann and Paulus’ proposed one way function based on the shortest vector problem
[BP97], which is as follows: for a lattice L, given a basis of a vector space V and a norm
N , which is often the standard Euclidean norm, find the vector in V that is in L and has
the least norm (i.e. the shortest vector in L). Cryptosystems based on lattice problems
are currently candidates for post-quantum cryptography. Currently, the best known attack
against this proposed function is exponential in the degree of the lattice; more work still has
to be done to check if there is a more efficient algorithm.
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