
Homomorphic Encryption

Saadiq, Rushil and Krishna
Euler Circle

December 9, 2019

Abstract

This paper introduces Homomorphic Encryption Schemes as devices for en-
abling remotely performed computations on encrypted data. We first lay down
some groundwork to ensure the reader understands the mathematical idea of a ho-
momorphism and the cryptographical ideas of encryption and decryption. We then
use examples to provide motivation for the Homomorphic Encryption Schemes.
This paper also presents a few examples of Homomorphic Encryption Schemes,
and proposes how these could be improved. Finally, the paper will discuss the
modern development of Fully Homomorphic Encryption and Bootstrapping meth-
ods. Finally, we address the practicality of Homomorphic Encryption and Fully
Homomorphic Encryption, and how such schemes will evolve in the future.

1 Homomorphic Encryption Functions

A Homomorphic Encryption (HE) scheme involves four essential operations: the
KeyGen operation, the classical Enc and Dec operations, and the Eval operation. The
first three are operations involved in classical encryption schemes, but Eval is specific
to Homomorphic Encryption schemes. To perform encryption, a public key pk is used,
while a secret key sk is used for decryption.

Definition 1. The KeyGen operation returns a key that is used to decrypt the cipher-
text into plaintext. (A good example of a KeyGen operation is the Diffie-Hellman Key
Exchange, which is a crucial stepping stone for cryptosystems like RSA.)

Definition 2. Enc(pk, c) is the encryption function, that encrypts the plaintext m and
turns it into a ciphertext c using some public key pk.

Definition 3. Dec(sk, c) is the decryption function that decrypts some ciphertext c into
its plaintext m using some secret key sk.

Before we discuss the Eval function, we must first describe what it means for an
encryption scheme to be homomorphic. Homomorphic encryption borrows the idea of a
homomorphism from abstract algebra in that a computer doing some operations (evalu-
ating circuits) on ciphertexts can be translated into plaintexts with operations done on
them (using the decryption function), though a homomorphism doesn’t necessarily need
to be involved.

1



Definition 4. A Group Homomorphism from (G1, ∗) to (G2, ·) is a function f such that

∀m,n ∈ G := f(m · n) = f(m) · f(n).

We shall name the character who is attempting to retrieve results from her data Alice.
Alice is storing her encrypted data in a remote location (say, the Cloud). Bob, on the other
hand, oversees and assists actions that are being made on the data in the remote location
(in this sense, Bob is the one who runs the Cloud). In most homomorphic encryption
schemes, Alice will be sending a query to Bob, who will perform Alice’s operation on the
encrypted data, and send the encrypted results back to Alice. Alice can then perform her
decryption function on Bob’s message to retrieve her result.

Definition 5. Eval is the homomorphic equivalent of the function f that Alice wishes
to compute on her data. To better understand the Eval operation, we consider the
following scenario. Suppose that Alice has a set of encrypted data that she stores on
the Cloud. She wishes to perform some function on that set of data (perhaps a “search”
query), but as she does not have it readily available, she must ask Bob, who runs the
Cloud server, to compute the function for her. However, Bob only has access to Alice’s
encrypted data, which may not cooperate well with Alice’s original search query. So,
Alice must supply the Cloud server with a homomorphism of her search function, namely
the Eval function, which will cooperate well with encrypted data. The Cloud server
then applies the Eval function, and sends Alice the encrypted results of her query, who
then decrypts the message to retrieve her search results. The beauty of homomorphic
encryption schemes is that the third-party Cloud server computed operations on Alice’s
data while blindfolded! In a sense, homomorphic encryption allows Alice to remotely
perform operations on encrypted data without having to disclose her results to the third
party.

For a concrete example of the Eval function, let’s say our set of messages is (Zp−1,+).
Assume we know a generator g in (Fp \ {0}, ∗) and we define our encryption function as
E(n) = gn to take advantage of the group homomorphism E(r+ s) = E(r) ∗E(s). Then
if we wanted to add two of our plaintexts m1 and m2, we could send E(m1) and E(m2) to
Bob and ask him to compute E(m1) ∗E(m2). Assume we knew how to compute discrete
logs for the sake of this example; then we could take the discrete log of Bob’s result with
base g, and we obtain the result m1 +m2. Then in this scheme, our Dec function would
be the discrete log and the Eval function would be multiplication. Our KeyGen function
could then give us the prime p.

2 Some Helpful Definitions

This section will lay some groundwork for the sections that follow.

Definition 6. A Circuit in the context of cryptography is essentially the same as the
typical logic circuit, in that it is a function built with some configuration of Logic Gates,
which represent Boolean operators (NAND, XOR, AND, NOT). In this sense, a Circuit
is a construction built from Boolean functions that are composed in a specific way in
order to produce a certain binary output given one or more binary inputs.

Definition 7. A Single-Hop Homomorphic Encryption Scheme (SHHE scheme) is one
that allows encrypted data to work well with one evaluation, but not necessarily with

2



two or more. This means that a Single-Hop Homomorphic Scheme would not allow Alice
to perform two operations (say a sort and then another operation on that sorted data)
on her data. In other words, a SHHE scheme does not allow the user to re-apply the
homomorphic Eval function to already-evaluated ciphertexts.

Definition 8. A Multi-Hop Homomorphic Encryption Scheme is one that allows for mul-
tiple iterations of homomorphic evaluation functions, and in this sense, is better than a
SHHE scheme.

The conversion of Single-Hop HE Schemes to Multi-Hop HE schemes is accomplished
with Bootstrapping methods, which are discussed in further detail later in the paper.

3 Attributes of Homomorphic Encryption

Definition 9. (Correct Decryption). A HE scheme correctly decrypts if, for all plaintexts
π in the plaintext space P ,

Pr[Dec(sk,Enc(pk, π)) = π] = 1,

where Pr is the probability function. In other words, we can guarantee that, given a
ciphertext encrypting plaintext π with public key pk, decrypting it with the secret key sk
corresponding with the public key pk will always give the correct result. This may seem
like an obvious and useless definition at first sight, but this becomes something important
to keep in mind when we consider the addition of a noise term when encrypting to deal
with the issue of malleability.

Definition 10. (Correct Evaluation). A HE scheme correctly evaluates all circuits C, if
for all C ∈ C, all ci ∈ X (the ciphertext space) that encrypt mi in the plaintext space,
and a negligible function ε, we have

Pr[Dec(Eval(evk, C, c1, ..., ck)) = C(m1, ...,mk)] = 1− ε.

Once again, circuits can just be thought of as a sequence of operations to be performed
on data. The evaluation key evk of a circuit C is the homomorphic equivalent of the
circuit, that produces the predicted result on the ciphertexts such that when we decrypt
the evaluated ciphertexts we get the circuit C evaluated on the plaintexts. Correct
Evaluation, like Correct Decryption, is a seemingly frivolous definition that becomes
important when considering the intentional sources of error resulting from evaluating
circuits in a secure manner.

4 Homomorphic Encryption Schemes

Definition 11. Multiplicative Homomorphic Encryption Scheme
Let F∗ = Fq \ {0} and Z∗q−1 = {k ∈ Zq−1| gcd(k, q − 1) = 1}, where q is the power of

a prime. For a positive integer n, let η be a primitive element of F∗, where a primitive

element is a generator of the multiplicative group of the field. Then, β = η
qn−1
q−1 is a

primitive element of Fq.

3



We now demonstrate how to generate the key for a multiplicative homomorphic en-
cryption scheme.

Choose a positive integer d such that d|(qn − 1)/(q − 1) and gcd(d, q − 1) = 1, and
choose l ∈ Z∗q−1. The tuple (d, l) is the secret key.

Encryption: Let α = η
qn−1
d , which is a primitive d-th root of unity over Fq. In order

to encrypt a plaintext m ∈ Fq∗, one chooses a random r ∈ 0, 1, ...., d− 1 and computes
the ciphertext as

c = γlogβmα
r

,

where γ = ηl(q
n−1/d(q−1), the discrete logarithm logβ(m) = a if βa = m.

Decryption: For c ∈ F∗qn , one computes

m′ = cd·l
−1

,

where l−1 is the inverse of l in Z∗q−1.
(Proof) We can prove that this scheme does indeed work by showing that the decryp-

tion of the encrypted plaintext results in the original plaintext. To decrypt the ciphertext
c = γlogβmαr, we look at

m′ = cd∗l
−1

= γlogβm
d∗l−1

(αr)d∗l
−1

= (γd)l
−1∗logβm(αd)r∗l

−1

= βl∗l
−1∗logβm = m.

This uses the fact that γd = βl and αd = 1. Then, to prove the multiplicative part of
this scheme, we can look to the fact that the decryption function m′ = cd∗l

−1
is a power

function. For instance, let the ciphertexts of m1 and m2 be c1 and c2 respectively. This
means that the decryption of c1 ∗ c2, for instance, results in

(c1 ∗ c2)d∗l
−1

= cd∗l
−1

1 ∗ cd∗l−1

2 = m1 ∗m2.

Definition 12. Additive Homomorphic Encryption Scheme
Let q be a prime power and n a positive integer. Also let

F (x) =
n−1∑
i=0

δix
qi − α

be a qn-ary affine function, where α ∈ Fqn and δi ∈ Fqn , i = 0, ...., n − 1. Then, an
element β ∈ Fqn is a root of F (x) if and only if F (β) = α.

Key Generation Choose α ∈ F∗ as the secret key. Define a qn-ary affine function
F (x) = Tr1

n(αx)

Encryption To encrypt a plaintext m ∈ Fq, one randomly chooses a root c ∈ Fqn of
the affine q-polynomial F (x)−m. Then, c is the ciphertext.

Decryption For c ∈ Fqn , one computes m′ = F (c).

(Proof) To prove that the above scheme is indeed additive, we have to utilize the
fact that the trace function is linear. For example, decrypting c1 + c2 gives F (c1 + c2) =
Tr1

n(α(c1 + c2)) = Tr1
n(αc1) + Tr2

n(αc2) = F (c1) + F (c2) = m1 +m2.

4



5 Noise Reduction in Homomorphic Encryption

One issue of homomorphic encryption is that of malleability; because such encryption
schemes require changes in data to be predictable so computation can be outsourced, the
person doing those computations can potentially alter the encrypted data and predict
what the result will be. In certain situations where important data is being passed, like
bank transactions, an attacker with knowledge of the kinds of functions that would be
use to encrypt the data could potentially alter the data in ways they can predict, like
changing the transaction amount. To safeguard against this, we add a noise term when
encrypting data in homomorphic encryption schemes. For this to happen, the decryption
function must be able to “see through” the noise.

However, a problem arises when Bob operates on the encrypted data. The noise
parameter can grow in size beyond the range from which the decryption function can
decrypt it. We want Bob to be able to operate on the encrypted data as much as possible:
in other words, we want a Multi-Hop Encryption scheme. To solve this, we employ the
technique of Bootstrapping.

5.1 Bootstrapping

Definition 13. A Somewhat Homomorphic Encryption scheme is an extension of a
Single-Hop Homomorphic Encryption scheme in that it can evaluate multiple circuits
on data, but only a finite amount.

Definition 14. A Fully Homomorphic Encryption scheme is a Multi-Hop encryption
scheme that can evaluate any amount of circuits and still be able to correctly decrypt.

The first fully homomorphic encryption scheme was found by Craig Gentry using the
concept of ideal lattices. The actual scheme is very long and complicated, so we restrict
our attention to the very novel idea of bootstrapping that Gentry uses in the context of
his encryption scheme.

From now on “we” refers to Bob, or the party that the computation is outsourced
to. We start by assuming we have a noisy ciphertext c encrypting a message m using a
secret key sk. By noisy, we mean that if we evaluate any more circuits on (adding more
error/noise), we cannot guarantee Alice can correctly decrypt it and obtain the desired
message m (refer to the definition of Correct Decryption). To accomplish this, we try to
“refresh” the ciphertext and remove the noise.

We know that we have a decryption function Dec(sk,c) that decrypts any ciphertext
c using the secret key sk associated with the public key pk used to encrypt the plaintext.
Normally, we see this as a function of the ciphertext for some secret key. The trick is to
view it instead as a function of the secret key. Let us call this new circuit Dc for the noisy
ciphertext c we are trying to refresh. We now assume that this function in terms of the
secret key is a low-depth ciruit (that is, it involves a relatively low number of operations).

Next, Alice gives us Enc(pk’,sk), an encryption of the secret key using some other
public key pk’ (to maintain security).

Finally, we compute
Eval(evk,Dc,Enc(pk′, sk))

where evk is the evaluation key for the circuit D and the public key pk’. If we decrypt
this, we see from our definition of correct evaluation that we should get

Dec(Eval(evk,Dc,Enc(pk′, sk))) = Dc(sk)

5



But note that by our definition of Dc that this is simply Dec(sk, c). So the decryption
of this computation is simply the plaintext message that c is encrypting. Let us call
this value c′. Then we have just shown that c′ encrypts the same value as c; however,
only two circuits have been evaluated to obtain c′: the homomorphic equivalent of the
decryption circuit as a function of sk and the encryption circuit from Alice’s side to
encrypt the secret key. Encryption should involve relatively simple operations, and since
we assumed that the decryption circuit as a function of sk has low depth, its homomorphic
equivalent should also have relatively few operations. This mean our new ciphertext c′

has less noise than c, but encrypts the same value! So in essence, we have “refreshed”
the ciphertext and continue evaluating circuits on it and refreshing it again as necessary,
thus allowing us to infinitely compute on the ciphertexts Alice sends us. This notion is
called “bootstrapping,” and is captured formally in the Bootstrapping Theorem due to
Craig Gentry, a central result in Fully Homomorphic Encryption.

Theorem 1. (Bootstrapping Theorem) Any Somewhat Homomorphic Encryption scheme
can be turned into a Fully Homomorphic Encryption scheme if it can handle its own de-
cryption circuit.

Here, “handle” simply means that the SWHE scheme is consistent with the following
criteria:

1. The encryption scheme can evaluate its own decryption circuit (i.e. our assumption
that there was an evaluation key evk for Dc was justified).

2. The circuit is of low depth, which was our other assumption.

In essence, the proof of the Bootstrapping Theorem follows from our description of
bootstrapping.

6 Conclusion

As of now, homomorphic encryption is still mostly confined to theory. The issues of
efficiency in practical implementation prove to outweigh the benefits of outsourcing com-
putation, at least for now. The more recent advancements in homomorphic encryption
like Gentry’s construction of a fully homomorphic encryption scheme appear promising,
but are also based on theoretical ideas that are very hard to implement. Even Gentry’s
bootstrapping theorem, though seemingly powerful, does not see much application; in
fact, in practice, most Somewhat Homomorphic Encryption schemes prove to be unable
to handle their own decryption circuits without severe and costly modifications, as if by
law of nature homomorphic encryption cannot be allowed to have any efficient imple-
mentation. However, the potential that homomorphic encryption has, in the ability to
allow encrypted computing without requiring the vast amount of power required to run
multiple servers that current methods require, will make it continue to be an important
area of research for computer scientists in the years to come.

References

[1] Craig Gentry , Dan Boneh, A Fully Homomorphic Encryption Scheme, Stanford
University, 2009
Last accessed 8 December 2019

6



[2] Craig Gentry, Computing Arbitrary Functions of Encrypted Data, Stanford Univer-
sity
Last accessed 8 December 2019

[3] Craig Gentry, Fully Homomorphic Encryption Using Ideal Lattices, Symposium on
the Theory of Computing (STOC), 2009
Last accessed 8 December 2019

[4] Frederik Armknecht , Colin Boyd , Christopher Carr , Kristian Gjøsteen , Angela
Jaschke1 , Christian A. Reuter , and Martin Strand, A Guide to Fully Homomorphic
Encryption
Last accessed 8 December 2019

[5] Jian Lu, Lusheng Chen, Sihem Mesnager Partially Homomorphic Encryption
Schemes Over Finite Fields, 2016
Last accessed 8 December 2019

7


