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Abstract

This is a brief overview of computational complexity theory and some of the more well-known com-
plexity classes. We define what we mean by problems and classes and explore the Turing machine model
of computation. We explain the concepts of reduction, hardness/completeness, and diagonalization, and
provide descriptions of lots of complexity classes.

1 Introduction: Why are all my classes so complex?

Definition 1.1 (Complexity Class). A complexity class is a set of functions with a common property.

This common property is usually that they can all be computed within some time or space restraint.
From here on, the restraints will typically be considered as a function of the input length.

Definition 1.2 (Decision Problem). A decision problem, or language, is a function that inputs a binary
string of 0s and 1s and outputs either 0 or 1. It can be defined as the set of inputs for which it “accepts”, or
outputs 1.

In other words, it’s a problem with a yes-or-no answer. Lots of classes are defined with this sort of
problem in mind, but there are exceptions (see More Classes).

2 Computational Models and the Turing Machine

Before we can start computing things, we need to discuss our computational model. This is something called
a Turing machine, akin to a very basic computer. We present one version of a Turing Machine, but there
are other versions (for example, we could use multiple tapes instead of one). We won’t do so here, but it
can be shown that such differences don’t make a big difference in efficiency.

A Turing machine consists of a tape made of discrete cells. Each cell can be filled with one of the letters
in a discrete alphabet Γ, for example, the set {0, 1}. There is also a head, which moves along the tape,
editing the contents of the cells according to a fixed set of rules. The head is always in one of a finite number
of states, Q.

A Turing Machine’s head moves along in steps. At each step, the head:

1. reads the symbol contained in the cell currently under the head.

2. consults its transition function δ : Q × Γ → Q × Γ × {L,R}. Given the head’s current state and the
symbol just read, the transition function tells the head (1) which state to switch into, (2) which symbol
to write to the current cell, and (3) whether to move one cell to the left or one cell to the right.

3. follows the instructions of the transition function. If the state it has switched into is one of the set of
final states F ⊂ Q, the Turing machine halts its computation.

4. Otherwise, it begins the cycle again in the cell it has just moved to.
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Since there are different versions of Turing machines, there are different ways to manage “inputs” and
“outputs”. In our version, we’ll make our input be the initial contents of the tape and our output be
determined by which of the members of F we halted in. Most of the time, we’ll be solving decision problems,
so F will consist only of an “accept” state and a “reject” state (or equivalently, 1 and 0).

A Turing machine is completely determined by Γ, Q, and δ. The output of a Turing machine is completely
determined by the input (the initial contents of the tape). As such, a Turing machine can be represented
as a series of bits (a “string”). This string can be fed as the input to another Turing machine. The
Turing machine that can take any other Turing machine’s string representation as input and simulate the
corresponding Turing machine is called the Universal Turing Machine.

While Turing machines can be implemented in real life, their use is mostly theoretical. The rationale
behind using the Turing machine model is that, as well as having the same computational ability as a modern
computer, it’s simple enough that it can be used to rigorously prove stuff. Our belief in the usefulness of
Turing machines can be encapsulated in the Church-Turing Thesis:

Thesis 2.1 (Church-Turing Thesis). Any computational algorithm can be implemented on a Turing machine.

It’s not completely settled whether this is an unproven hypothesis or if it really only serves as a definition
for what we consider “computation”.

Definition 2.1 (Turing Complete). A model of computation is Turing complete if it can simulate a Turing
machine.

Pretty much all modern computers and programming languages are Turing complete. Also, Turing
machines are powerful enough to simulate real-life computers, and it seems that they do so without a big
loss of efficiency. As a result of this, we strongly believe that all of our computational models are basically
equivalent.

Notation/definition check before we move on: note that “problem”, “language”, and “function” are all
essentially used interchangeably. Problems are distinct from Turing machines, which are used to implement
algorithms for solving problems. Since Turing machines can be represented as strings, we denote by Mx the
Turing machine whose string representation is x.

3 Some complexity classes

This is a quick list of the most familiar complexity classes. which are organized by how much time or space
they take up as a function of input length. They all deal with decision problems. Before we start, there’s an
important distinction to make between “deterministic” and “nondeterministic” computation: a deterministic
machine follows the same set of instructions each time to reach an answer, while a nondeterministic machine
has to make arbitrary choices at certain points along the way. We judge nondeterministic machines on the
optimistic assumption that they always make the right choice, which is why, for example, “solvable by a
nondeterministic machine in polynomial time” and “can be verified by a deterministic machine in polynomial
time” are equivalent: if we can solve a problem with a nondeterministic machine in polynomial time, then
it will only take polynomial time for a deterministic machine can check that the path to the solution the
nondeterministic machine came up with is valid. Also, if we can verify a solution in polynomial time, then
a nondeterministic machine could correctly guess each step of the solution as we verify it in order to solve
the problem in nondeterministic polynomial time. Now let’s introduce some classes.

Definition 3.1 (DTIME). Solvable in a finite amount of time for every input (i.e., the amount of time to
solve is some function of input length).

Definition 3.2 (P ). The amount of time to solve is (at most) some polynomial function of the input length
for every input.

The class P is generally considered to be the class of “easy-to-solve” problems.

Definition 3.3 (EXPTIME). The amount of time to solve is (at most) some exponential function of the
input length for every input.
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Classes that start with the letter N are for Nondeterministic machines. Remember that solving by a
nondeterministic machine in x amount of time is equivalent to checking by a deterministic machine in x
amount of time.

Definition 3.4 (NTIME). Solvable by a nondeterministic machine in a finite amount of time for every
input.

Definition 3.5 (NP ). The amount of time to solve for a nondeterministic machine is (at most) some
polynomial function of the input length for every input.

Another way to think about the class NP is that it can be verified in polynomial time. For example, say
you were given a list of arbitrary numbers {−5,−3,−2, 1, 6} and you wanted to check if there exists a subset
of these numbers that add to 0; in this instance, −5− 2 + 1 + 6 = 0. You could design an algorithm to figure
it out by generating all subsets of the set and test each one to see if their sum is 0. The time of this method
would increase exponentially depending on the size of the set. However, given one possible subset (known
as a witness), you can check its validity within polynomial time. Therefore, this problem is in NP .

Definition 3.6 (NEXPTIME). The amount of time to solve for a nondeterministic machine is (at most)
some exponential function of the input length for every input.

Classes can also be defined by how much space is needed to solve a problem, though time-based complexity
is more important. Here are a few space classes anyway, starting with the ones for deterministic machines:

Definition 3.7 (DSPACE). Solvable in a finite amount of space for every input.

Definition 3.8 (L). The amount of space to solve is some logarithmic function of the input length for every
input.

L is interesting because it is contained in P . In O(log n) space, there are only 2O(logn) = O(n) possible
states, so if our algorithm takes more than O(n) time it repeats itself.

Definition 3.9 (PSPACE). The amount of space to solve is some polynomial function of input length for
every input.

Definition 3.10 (EXPSPACE). The amount of space to solve is some exponential function of input length
for every input.

Definition 3.11 (NSPACE). Solvable by a nondeterministic machine in finite space for every input.

Definition 3.12 (NL). The amount of space to solve for a nondeterministic machine is some logarithmic
function of input length for every input.

Definition 3.13 (NPSPACE). The amount of space to solve for a nondeterministic machine is some
polynomial function of input length for every input.

Definition 3.14 (NEXPSPACE). The amount of space to solve for a nondeterministic machine is some
exponential function of input length for every input.

4 Diagonalization and Reduction

The notion of “reduction” is an important one. It means to show that one problem is a transformation of
another. The two main versions of reduction are (1) a bijection between instances/solutions of problem A
and instances/solutions of problem B (many-one reduction), and (2) an algorithm for solving A, given an
oracle for B (Turing reduction).

Definition 4.1 (Oracle). An oracle for a problem A will, given any input x, correctly and quickly return
A’s output on x.
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One subtlety of reduction is that we need to keep track of how resources are taken up by the reductions
themselves. For example, reducing one problem in P to another problem in P by means of an exponential-
time reduction algorithm is not especially useful. For this reason, reductions within the time and space
classes already mentioned are usually restricted to polynomial time and/or logarithmic space. Reduction is
reflexive and transitive, but not symmetric. When problem B can be reduced to problem A, we know that
A takes at least as much resources to solve as B does.

We will now deal with the use of reduction as a proof technique. It works like this: to show that problem
A is impossible, we show that if we can solve problem A, we can also solve some problem that we already
know is impossible, problem B. In the language of reductions, we show that some impossible problem B is
reducible to A, which implies that A itself is impossible.

But before we get to reduction, we must introduce another very important proof technique, diagonaliza-
tion.

Definition 4.2 (Computable). A function is computable if there exists an algorithm that can compute the
output to the function for every possible input.

If a function isn’t computable, that means that any algorithm that attempts to solve it must either
sometimes be wrong or loop forever on certain inputs.

Theorem 4.1. There exists some decision problem that is not computable by any Turing Machine.

Proof. For any Turing Machine Mα, denote by α the string representation of Mα. Here’s a function f :

f(x) =

{
0 if Mx(x) = 1

1 otherwise

Suppose there’s some Turing machine Mβ that computes f . Then what is Mβ(β)? Suppose Mβ(β) = 1.
Then, looking at the definition of f , we must have that f(β) = 0. Since Mβ computes f , we must have
that Mβ(β) = f(β) = 0. We have a contradiction - Mβ(β) cannot be 1. Okay, let’s try Mβ(β) = 0. This
corresponds to “otherwise” in the definition of f , so f(β) = 1. Since Mβ computes f , we must have that
Mβ(β) = f(β) = 1. We have a contradiction - Mβ(β) cannot be 0. There’s nothing that Mβ(β) can be, so
our only way out is to conclude that Mβ , a Turing machine to compute f , does not exist. We have found
an uncomputable function.

The part of this proof that made it diagonalization was constructing f so that f(x) was never equal to
Mx(x). More generally, diagonalization is about taking a set of things and then constructing a new thing
that is different from everything else in the original set. Perhaps this doesn’t seem especially “diagonal”,
but the name comes from other proofs (for instance, showing that the set R is uncountably infinite) where
we can represent the proof using a diagram/list with a diagonal line through it.

We can use f to prove something else interesting using the reduction technique: that some problems are
unsolvable by Turing machines.

Definition 4.3 (Halting Problem). The halting problems asks if an arbitrary computer program (or Turing
machine) halts, i.e. whether or not it ever finishes running.

In 1936, Alan Turing proved that the halting problem is undecidable, or that cannot be solved for one
general algorithm. We will do a rigorous proof using the function f we introduced, but first, we present the
concept of a more intuitive proof by contradiction:

Proof. Suppose there exists a total computable function halts(f) that returns true or false depending on
whether f halts for some input. Then, let us define the pseudocode for a function g as follows:

def g() :

if halts(g) :

loop forever()
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If if halts(g) returns false, the function will end, thus creating a contradiction. However, if if halts(g) is
true, loop forever will be called and we have another contradiction. Therefore, the original assumption that
halts(f) is a total computable function must be wrong.

Now for a less intuitive but more rigorous proof. Define the function H (for Halting Problem) as follows:
For every Turing machine M and input x, let H(M,x) = 1 if M eventually halts on input x, and H(M,x) = 0
if M loops forever on input x.

Proof. Suppose there’s some Turing machine Mα that computes H. Since Turing machines can simulate
each other, we can make another Turing machine Mz to simulate Mα and then do some additional stuff.
Note that since H(x) takes a pair (M,x) as input, so does Mα. Mz does the following on an input x:

1. Constructs Mx from x, or does whatever it needs to in order to simulate Mx later. (If you find this
problematic, remember that since the Universal Turing Machine exists, there’s an Mz that can always
do this.)

2. simulates Mα running on input (Mx, x).

3. if Mα(Mx, x) = 0, then we know Mx loops forever on input x. We return 1.

4. if Mα(Mx, x) = 1, then simulate Mx running on input x.

5. If Mx(x) = 0, return 1. If Mx(x) = 1, return 0.

But wait, look closely. If Mx loops forever on x, we return 1. If Mx(x) = 0, we return 1. If Mx(x) = 1, we
return 0. Sound familiar? Go back and look at the definition of f(x) from before. Mz(x) will always be the
same as f(x), so Mz computes f . If we can compute H, then we can use that to compute f . In other words,
f reduces to H. Since f is uncomputable, we are forced to conclude that H is uncomputable too.

Hopefully these proofs have demonstrated the power of diagonalization and reduction and helped us get
an appreciation for how useful the Turing machine model can be.

5 I Feel So Complete

Two important concepts that rely on reduction are hardness and completeness.

Definition 5.1 (Hardness). Problem A is at least as hard as problem B if problem B can be reduced to
problem A. A problem is hard for a class if all other problems in the class can be reduced to it.

Also, sometimes “A is harder than B” is taken in the usual sense of “hard”, i.e., meaning only that A
requires more resources to compute.

Definition 5.2 (Completeness). A problem is complete for a class if it is hard for the class and the problem
is in the class.

The notion of completeness/hardness gives us an easy way to talk about all the problems in a class.
For instance, a quick solution to a hard problem implies a quick solution to every problem in the class it is
hard for. Thus, the existence of a polynomial-time algorithm for any problem that is NP -hard implies the
existence of a polynomial-time algorithm for every problem in NP . In other words, if we wish to prove that
P = NP , a good way of doing so is to pick an NP -hard problem and prove that that problem is actually in
P . Note that it is widely believed that P 6= NP , so if we try this we are unlikely to be successful.

It’s not intuitively clear that any problem can be complete. But in fact there are lots of them, including
the most well-known group of them, the NP -complete problems. Here’s one such problem TMSAT : given
a Turing machine M and a time limit t, return 1 if there’s an input y such that M returns 1 on input y
within t steps.

Theorem 5.1. TMSAT is NP -complete.
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Proof. To be NP -complete, TMSAT must be NP -hard and in NP . First observe that TMSAT is checkable
in polynomial time: if we claim that y is a solution, we can simply simulate M running on input y for a
maximum of t steps. If M returns 1 during that time, then y really is a solution. Furthermore, To show
that TMSAT is NP -hard, let’s first take any other problem A ∈ NP . Our goal is to show that A can be
reduced to TMSAT , or that given an algorithm for solving TMSAT , we can solve A. Since A is in NP , A
can be verified in polynomial time. Thus, there’s a Turing Machine Mα that returns 1 on an input (x, y) if
and only if A outputs y on input x, and does so in polynomial time.

Assuming we have an algorithm for solving TMSAT , we can hijack it to solve A instead. First, we make
a version of Mα with the x part of the input built-in, call it Mα,x. (Mα(x, y) and Mα,x(y) have the same
output.) Our input to the TMSAT -solving algorithm is the Turing machine Mα,x and a time limit t for
which Mα,x is guaranteed to finish. (Given the length of the input x, we can find such a t, since Mα,x runs
in polynomial time.) If the TMSAT -solving algorithm works, it will output y such that Mα,x(y) = 1. Using
this method, we can always find y given x, which means we can always compute A. Since A could have been
any problem in NP , every problem in NP reduces to TMSAT .

Another notableNP -complete problem is 3SAT , which asks, given a formula involving Boolean (true/false)
variables and Boolean operators (and, or, not), can we assign values to those variables in such a way that the
entire expression evaluates to true? 3SAT is a special case of the problem SAT , which deals with Boolean
formulae in Conjunctive Normal Form (CNF). A formula in CNF is of the form

C1 ∧ C2 ∧ · · · ∧ Cn

Each Ci is called a clause and is of the form (l1 ∨ l2 ∨ · · · ∨ lm), where ∧ means and, and ∨ means or. The
lis are literals, which take the value of either a variable or its negation from the set of variables {x1, . . . xk}.
Here’s an example of a Boolean formula in 3CNF form (3 literals per clause):

(x1 ∨ x2 ∨ x3) ∧ (−x4 ∨ −x3 ∨ x2) ∧ (x4 ∨ −x1 ∨ x5) ∧ (x3 ∨ x5 ∨ x2)

If the variables {x1, . . . xk} in a CNF formula can be assigned values so that the entire formula evaluates
to true, we call that formula satisfiable. SAT asks whether a given CNF formula is satisfiable, and 3SAT
asks whether a given 3CNF formula is satisfiable. Both problems are in NP , since we can check if a set of
values is a solution by plugging in the set of values for the variables {x1, . . . xk}. We’ll show in a minute that
SAT actually reduces to 3SAT . The proof that 3SAT is NP -complete is a little more involved than either
that proof or the proof that TMSAT is NP -complete. It relies on showing that any NP problem can be
expressed as a Boolean formula in 3CNF form.

Theorem 5.2. Any SAT (CNF form) formula can be reduced to 3SAT (3CNF form).

Proof. We break this proof into four cases to turn an arbitrary clause C into an equivalent set of clauses,
each of which has 3 literals. This enables us to convert a CNF formula, where clauses can have any number
of literals, into a 3CNF formula, where clauses are only allowed to have 3 literals.

Case 1: C has one literal. Define new variables z1 and z2 and replace C by the four clauses (l ∨ z1 ∨ z2),
(l∨ z1 ∨ z2), (l∨ z1 ∨ z2), and (l∨ z1 ∨ z2). Since adding ∧s between these still makes C = l, C is now 3SAT .

Case 2: C has two literals so that C = l1∨ l2. This time, define z1 and replace C with the clauses (l1∨ l2∨z1)
and (l1 ∨ l2 ∨ z1). Thus C is 3SAT .

Case 3: In this case, C already has 3 literals, so it is already 3SAT .

Case 4: C has more than 3 literals, so let k > 3 as C = l1 ∨ l2 ∨ l3 ∨ · · · ∨ lk. Next, replace C with the k − 3
clauses: (l1 ∨ l2 ∨ z1), (l3 ∨ z1 ∨ z2), (l4 ∨ z2 ∨ z3), . . . , (lk−2 ∨ zk−4 ∨ zk−3), (lk−1 ∨ lk ∨ zk−3). Notice that
unlike the prior cases, this doesn’t just simplify like before. However, it can be verified that

1. if there used to exist a way of assigning x1, . . . , xk so C is true, there is also a way of assigning
z1, . . . , zk−3 so that the new C is true.

2. if x1, . . . , xk make C false, it is impossible to assign z1, . . . , zk−3 to make the new C true.

6



6 More classes

There are more classes than just the regular time and space ones!

Definition 6.1 (co-NP ). A problem x is in the class co-NP if its complement, x, is in NP . This means
co-NP contains problems that can be verified “no” in polynomial time.

One particular example of a co-NP problem is co-SAT . The regular SAT (boolean satisfiability) problem
is to determine whether a boolean expression, say “A or not B”, can be made true with A and B. In this
case, A = true and B = false works. Therefore, co-SAT asks if a boolean expression is not satisfiable. Keep
in mind that showing that simply one example that doesn’t work doesn’t necessarily put the entire problem
in co-NP .

Definition 6.2 (RP). RP, meaning randomized complexity time, is a class containing the problems for
which there exists a probabilistic Turing machine such that:

1. It runs in polynomial time

2. If the answer is “no”, it always correctly returns “no”

3. If the answer is “yes”, it correctly returns this answer at least 50% of the time

Definition 6.3 (#P ). Problems in #P calculate the number of solution paths of an NP problem. They are
not decision problems.

Definition 6.4 (PP ). PP is a large class of problems, containing other classes such as NP , BPP , and
BQP . Problems in PP are solvable by a probabilistic Turing machine in polynomial time with less than 50%
error.

One interesting proof is showing that NP is in PP . Because of the theory of NP -completeness, all
we have to do is show that SAT is in PP . Let F be the Boolean formula in question. Next, check if a
random assignment of variables satisfies F . If so, the algorithm outputs 1, but if not, performs a coin flip.
If F ∈ SAT (meaning it is satisfiable), then the overall probability of our algorithm correctly outputting 1
is at least 1/2 + 2−m (where m is the number of arguments in F , so we made m random decisions in the
first step). If F 6∈ SAT , then the probability of the algorithm correctly answering −1 is at least 1/2. Thus,
SAT is in PP , which generalizes to show that the class NP is in PP .

Definition 6.5 (BPP ). BPP stands for bounded-error probabilistic polynomial time, and is a more efficient
subset of the PP complexity class. A problem belongs in BPP if there is a probabilistic Turing machine that
runs in polynomial time. It returns the correct answer with at least 2/3 probability (or the wrong answer
with at most 1/3 chance).

A subtle difference between RP and BPP that is important to point out is that if the program outputs
‘yes’, it is always right. Although not separately defined in this paper, we also know that co-RP means the
opposite: that when the answer ‘no’ is outputted, that answer is correct. Therefore, one wonders whether
it is possible to have a problem that, when probabilistically solved, has some error for both ‘yes’ and ‘no’
answers.

There’s not an easy answer to this question, but one possible example of a problem that is in BPP but
not RP or co-RP is something along the lines of telling whether a number is a Perfect Number. A perfect
number is a positive integer for which the sum of its proper divisors is equal to itself. Other people speculate
problems like certain factorization algorithms or using linear programming to approximate the volume of a
convex body, while some people believe that there are very few, if any, problems left in BPP but not P .

Definition 6.6 (ZPP ). ZPP stands for zero-error probabilistic polynomial time, meaning that a problem
exists in this class if there exists a probabilistic Turing machine such that it returns “yes” or “no” answers
with perfect accuracy, and that this answer can always be found in polynomial time.

Definition 6.7 (BQP ). Explained informally, BQP is essentially the same thing as BPP except including
quantum Turing machines. Meaning, there is a polynomial time quantum algorithm that has a maximum
1/3 chance of error.
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As you may have heard, quantum algorithms are a lot more powerful than classical algorithms, en-
abling certain problems in mathematics to be computed in a much shorter amount of time. For example,
Shor’s Algorithm factors an integer n in polynomial time in terms of log n (the size of n), Specifically in
O((log n)2(log log n)(log log log n)). This is substantially faster than the general number field sieve, which is
currently the fastest factoring algorithm we have and runs in sub-exponential time.

The first part of the algorithm, using regular classical computing, reduces the factoring problem into
an order-finding problem. Then, the magic to Shor’s Algorithm comes from the efficiency of the quantum
Fourier transform. It’s too complicated to explain with the scope of this paper, but the Fourier transform
maps one quantum state to another.
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