
Introduction to elliptic curves and an application

to cryptography

Justin Wu

December 2019

1 Introduction

In this paper, we introduce the basic theory of elliptic curves, and look at an
application of the Weil pairing to cryptography. The goal will be to provide a
high level overview, and so many technical unenlightening proofs will be omitted.
Throughout this paper, K and K̄ will denote a field and it’s algebraic closure,
and GK̄/K the galois group. Curves are smooth projective varieties of dimension

1, K(E) and K̄(E) denote the function fields for an arbitrary variety E over K
and K̄ respectively.

2 Preliminaries

Definition 1. The divisor group of a curve Div(C), is the free abelian group
generated by the points of C i.e. all formal finite Z linear combinations of points
of C. Divisors are denoted D =

∑
P∈C nP (P ).

Definition 2. The degree of D is defined by degD =
∑
P∈C nP . The divisors

of degree 0 is the subgroup of Div(C) denoted Div0(C).

GK̄/K naturally acts on Div(C) and Div0(C) by

Dσ =
∑
P∈C

nP (Pσ)

Definition 3. D is defined over K if Dσ = D ∀σ ∈ GK̄/K . We denote the

group of divisors defined over K as DivK(C) and similarily Div0
K(C).

Definition 4. Let f ∈ K̄(C)∗. Then we define

div(f) =
∑
P∈C

ordP (f)(P )

See Hartshorne I.6.5 for a proof that there are only finitely many points
where f has a pole or zero. We define D ∈ Div(C) to be principle if D = div(f)
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for some f ∈ K̄(C)∗. Divisors D1 and D2 are linearly equivalent, written
D1 ∼ D2 if D1−D2 is principal. The Picard group of C, denoted Pic(C) is the
quotient of Div(C) by its subgroup of principal divisors (easy exercise: prove
that the collection of principal divisors is indeed a subgroup).

Theorem 1. deg(div(f)) = 0.

Proof. See Hartshorne II.6.10.

A divisor D =
∑
nP (P ) is positive if nP ≥ 0 ∀P ∈ C. We write D1 ≥ D2

to mean that D1 −D2 is positive.

Definition 5. Let D ∈ Div(C). Define

L(D) = {f ∈ K̄(C)∗ : div(f) ≥ −D} ∪ {0}

This is a finite dimensional K̄ vector space, and we denote `(D) = dimK̄L(D).

Theorem 2. We have the following.
(a) If deg(D) < 0, then L(D) = {0} and `(D) = 0
(b) L(D) is a finite-dimensional K̄ vector space.
(c) If D1 ∼ D2, then L(D1) ∼= L(D2).
(a) and (c) are easy exercises left to the reader, and (b) follows from Hartshorne,

II.5.19.

Theorem 3. (Riemann-Roch) Let C be a smooth curve and let KC be a canon-
ical divisor on C. Then there is an integer g ≥ 0, called the genus of C, such
that for every divisor D ∈ Div(C),

`(D)− `(KC −D) = deg(D)− g + 1

We do not concern ourselves with the details of what a canonical divisor is,
and the proof. For a proof, see Hartshorne IV.1 or Lang, An Introduction to
algebraic and abelian functions.

3 Basic theory of elliptic curves

3.1 Elliptic Curves

The most natural definition of an elliptic curve is a genus 1 curve with a distin-
guished point (denoted O). This definition is equivalent to a plane cubic, and
can be written in a Weierstrass form.

Theorem. There exist functions x, y ∈ K(E) such that the map

φ : E → P2

φ = [x, y, 1]
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such that φ(O) = [0, 1, 0] and is an isomorphism of E/K onto a curve

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with a1 . . . a6 ∈ K.
The proof involves the Riemann-Roch theorem and is omitted.

If we assume K has characteristic p ≥ 5, then substitutions of variables
allows us to reduce the Weierstrauss form to the Weierstrauss normal form
y2 = x3 + ax + b (See Silverman, Arithmetic of Elliptic Curves for a proof).
Note that we typically are only interested in nonsingular curves, which is true
if and only if the discriminant 4a3 + 27b2 6= 0.

3.2 Group structure

The reader is likely familiar with the group structure on an elliptic curve where
given two points P , Q, P + Q is defined as the point obtained from drawing a
line through P and Q (tangent line if P = Q) which intersects E at R, and the
third intersection with E of the line going through R and O is defined as the
sum P +Q. However, this group structure can be framed algebraically with the
Picard group:

Theorem 4. There exists a map σ : Div0(E) → E as follows: For every
degree-0 divisor D ∈ D0(E), we define σD as the unique point P ∈ E satisfying
D ∼ (P )− (O).

(a) This point exists and is unique
(b) σ is surjective
(c) σ(D1) = σD2 if and only if D1 ∼ D2. Therefore σ induces a bijection of

sets between Pic0(E) and E.
(d) The geometric group law on E and this algebraic group law induced by

the inverse map P → divisor class of (P )− (O) are the same.

Theorem 5. D = div(f) for some f ∈ K̄(E)∗ if and only if deg(D) = 0 and
the evaluation of the formal sum with the group structure on E gives O.

Definition 6. An Isogeny of elliptic curves is a morphism φ : E1 → E2 with
φ(OE1

) = OE2
.

Note: In general, morphisms of curves are constant or surjective (see Hartshorne
II.6.8) for a proof. Therefore all isogenies are either trivial or surjective.

Definition 7. Let [m] denote the multiplication by m isogeny E → E (exercise:
verify that this is an isogeny).

Definition 8. An isogeny φ of elliptic curves E1, E2, induces an injection of
function fields φ∗ : K̄(E2) ↪−→ K̄(E1). The degree of φ is defined as the degree
of this extension.

Theorem 6. deg([m]) = m2 and the m−torsion subgroup of E(K), denoted
E[m] is isomorphic to Z

mZ ×
Z
mZ
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Proof. The proof involves the dual isogeny and is omitted.

Theorem 7. Isogenies are group homomorphisms.

Proof. Note that φ induces a homomorphism φ∗ : Pic0E1 → Pic0(E2). The
equivalence of the geometric group structure on E and the algebraic group
structure of Pic0 shows that φ is a homomorphism. The details are left to the
reader.

3.3 Weil Pairing

We construct the Weil em-pairing, which is a map em : E[m]×E[m]→ µm where
µm is the group of the mth roots of unity. This pairing is bilinear, alternating,
nondegenerate, galois invariant, and compatible. Recall that a divisor

∑
ni(Pi)

is the divisor of some function if and only if
∑
ni = 0 and

∑
[ni]Pi = O.

Now let T ∈ E[m]. Then there exists f ∈ K̄(E) with

div(f) = m(T )−m(O)

Now take a T ′ ∈ E with [m]T ′ = T . Similarly, there exists g ∈ K̄(E) with

div(g) =
∑

R∈E[m]

((T ′ +R)− (R))

Note that f ◦ [m] and gm have the same divisor since the divisor of gm is∑
R∈E[m]

(m(T ′ +R)−m(R))

which is also the divisor of f ◦ [m]. Therefore, we have up to a constant in K̄∗,
f ◦ [m] = gm. Now let S ∈ E[m]. We have for any X ∈ E,

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m

Therefore, if we consider the function g(X+S)/g(X) as a function of X, it must
be a m-th root of unity. But since there are only m possible values, this function
is a morphism E → P1 which is not surjective, so it is constant. Therefore, we,
have a well defined pairing

em : E[m]× E[m]→ µm

defined by

em(S, T ) =
g(X + S)

g(X)

Theorem 8. The Weil em pairing satisfies the following
(a) It is bilinear

em(S1 + S2, T ) = em(S1, T )em(S2, T )
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em(S, T1 + T2) = em(S, T1)em(S, T2)

(b) It is alternating
em(T, T ) = 1

(c) It is nondegenerate: If em(S, T ) = 1 for all S ∈ E[m], then T = O
(d) It is Galois invariant

em(S, T )σ = em(Sσ, Tσ) ∀σ ∈ GK̄/K

(e) It is compatible:

emm′(S, T ) = em([m′]S, T )

for all S ∈ E[mm′] and T ∈ E[m].

The proof is not useful for our purposes and omitted. An important corollary
is that part (a) implies that if S, T generate E[m], then emS, T is a primitive
m-th root of unity.

4 Application to Cryptography

4.1 Three-way Diffie-Hellman

The reader is likely familiar with the Diffie-Hellman key exchange algorithm,
which allows Alice and Bob to securely exchange an unspecified key. The Weil
pairing provides a 3-way key exchange system (invented by Joux) but the pairing
must be slightly modified. This is because the Weil em pairing is alternating, i.e.
em(T, T ) = 1. We want em(T, T ) to be a primitive nth root of unity. One way
around this is to use a curve that has a distortion map, an isogeny φ : E → E
such that there exists T ∈ E such that {T, φ(T )} is a basis for for E[n]. Then
we can define the modified Weil pairing

〈·, ·〉 : E[n]× E[n]→ µn

〈P,Q〉 = en(P, φ(Q))

Then we have 〈T, T 〉 is a primitive nth root of unity.
Here is how the Tripartite Diffie-Hellman key exchange works. Alice, Bob,

and Carl agree on a finite field Fq, a prime p, an elliptic curve E/Fq that has a
distortion map, and a point T ∈ E(Fq)[p]. Alice, Bob, and Carl choose secret
integers a, b, c. Alice computes A = [a]T , Bob computes B = [b]T , and Carl
computes C = [c]T , and each publishes these points. The key is 〈T, T 〉abc. Alice
computes 〈B,C〉a, Bob computes 〈A,C〉b, and Carl computes 〈A,B〉c. It is
easily verified that this works. This is secure because the elliptic curve discrete
logarithm problem is believed to be secure.
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