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1 Introduction

In this paper, we introduce the basic theory of elliptic curves, and look at an
application of the Weil pairing to cryptography. The goal will be to provide a
high level overview, and so many technical unenlightening proofs will be omitted.
Throughout this paper, K and K will denote a field and it’s algebraic closure,
and G'g /i the galois group. Curves are smooth projective varieties of dimension
1, K(E) and K(E) denote the function fields for an arbitrary variety E over K

and K respectively.

2 Preliminaries

Definition 1. The divisor group of a curve Div(C), is the free abelian group
generated by the points of C i.e. all formal finite Z linear combinations of points
of C. Divisors are denoted D = . np(P).

Definition 2. The degree of D is defined by degD = 3 p.np. The divisors
of degree 0 is the subgroup of Div(C) denoted Div°(C).

Gk naturally acts on Div(C) and Div®(C) by
D7 =" np(P°)
PeC

Definition 3. D is defined over K if D7 = D Vo € G x. We denote the
group of divisors defined over K as Divg (C) and similarily Div% (C).

Definition 4. Let f € K(C)*. Then we define

div(f) =Y ordp(f)(P)

PeC

See Hartshorne 1.6.5 for a proof that there are only finitely many points
where f has a pole or zero. We define D € Div(C) to be principle if D = div(f)



for some f € K(C)*. Divisors D; and D, are linearly equivalent, written
Dy ~ Dy if Dy — D5 is principal. The Picard group of C, denoted Pic(C) is the
quotient of Div(C) by its subgroup of principal divisors (easy exercise: prove
that the collection of principal divisors is indeed a subgroup).

Theorem 1. deg(div(f)) = 0.
Proof. See Hartshorne 11.6.10. O

A divisor D = Y np(P) is positive if np > 0 VP € C. We write D1 > Dy
to mean that D; — D5 is positive.

Definition 5. Let D € Div(C). Define
L(D) = {f € K(C)+ : div(f) = —D} U {0}
This is a finite dimensional K vector space, and we denote {(D) = dim g L(D).

Theorem 2. We have the following.

(a) If deg(D) < 0, then L(D) = {0} and £{(D) =0

(b) L(D) is a finite-dimensional K vector space.

(C) If D1 ~ DQ, then L(Dl) = L(DQ)

(a) and (c) are easy exercises left to the reader, and (b) follows from Hartshorne,
I11.5.19.

Theorem 3. (Riemann-Roch) Let C be a smooth curve and let K¢ be a canon-
ical divisor on C. Then there is an integer g > 0, called the genus of C, such
that for every divisor D € Div(C),

{(D)—4(Kc —D)=deg(D)—g+1

We do not concern ourselves with the details of what a canonical divisor is,
and the proof. For a proof, see Hartshorne IV.1 or Lang, An Introduction to
algebraic and abelian functions.

3 Basic theory of elliptic curves

3.1 Elliptic Curves

The most natural definition of an elliptic curve is a genus 1 curve with a distin-
guished point (denoted O). This definition is equivalent to a plane cubic, and
can be written in a Weierstrass form.

Theorem. There exist functions x,y € K(F) such that the map
¢:E—P?

¢ = [z,y,1]



such that $(O) = [0,1,0] and is an isomorphism of E/K onto a curve
C:Y?’+a1 XY 4+ a3y = X2+ axX? 4+ as X + ag

with aq ...a¢ € K.
The proof involves the Riemann-Roch theorem and is omitted.

If we assume K has characteristic p > 5, then substitutions of variables
allows us to reduce the Weierstrauss form to the Weierstrauss normal form
y? = 2® 4+ ax + b (See Silverman, Arithmetic of Elliptic Curves for a proof).
Note that we typically are only interested in nonsingular curves, which is true
if and only if the discriminant 4a® + 276 # 0.

3.2 Group structure

The reader is likely familiar with the group structure on an elliptic curve where
given two points P, @), P + @ is defined as the point obtained from drawing a
line through P and @ (tangent line if P = )) which intersects E at R, and the
third intersection with E of the line going through R and O is defined as the
sum P+ Q). However, this group structure can be framed algebraically with the
Picard group:

Theorem 4. There erists a map o : Div®(E) — E as follows: For every
degree-0 divisor D € D°(E), we define oD as the unique point P € E satisfying
D~ (P) - (0).

(a) This point exists and is unique

(b) o is surjective

(¢) c(D1) = oDs if and only if D1 ~ Ds. Therefore o induces a bijection of
sets between Pic’(E) and E.

(d) The geometric group law on E and this algebraic group law induced by
the inverse map P — divisor class of (P) — (O) are the same.

Theorem 5. D = div(f) for some f € K(E)* if and only if deg(D) = 0 and
the evaluation of the formal sum with the group structure on E gives O.

Definition 6. An Isogeny of elliptic curves is a morphism ¢ : E1 — E5 with
d)(OEl) = OEz .

Note: In general, morphisms of curves are constant or surjective (see Hartshorne
I1.6.8) for a proof. Therefore all isogenies are either trivial or surjective.

Definition 7. Let [m] denote the multiplication by m isogeny E — E (exercise:
verify that this is an isogeny).

Definition 8. An isogeny ¢ of elliptic curves Eq, Es, induces an injection of

function fields ¢* : K(Fy) — K(Ey). The degree of ¢ is defined as the degree
of this extension.

Theorem 6. deg([m]) = m? and the m—torsion subgroup of E(K), denoted
E[m] is isomorphic to % x L



Proof. The proof involves the dual isogeny and is omitted. O
Theorem 7. Isogenies are group homomorphisms.

Proof. Note that ¢ induces a homomorphism ¢, : Pic’E; — Pic®(E,). The
equivalence of the geometric group structure on F and the algebraic group
structure of Pic® shows that ¢ is a homomorphism. The details are left to the
reader. O

3.3 Weil Pairing

We construct the Weil e,,,-pairing, which is a map e, : E[m]x E[m] — p,, where
L is the group of the m* roots of unity. This pairing is bilinear, alternating,
nondegenerate, galois invariant, and compatible. Recall that a divisor > n;(P;)
is the divisor of some function if and only if Y~ n; =0 and > [n;]P; = O.

Now let T € E[m]. Then there exists f € K(E) with

div(f) = m(T) —m(O)
Now take a 7" € E with [m|T” = T. Similarly, there exists g € K(FE) with
div(g) = ) ((T"+R) —(R))
REE[m]
Note that f o [m] and ¢" have the same divisor since the divisor of ¢ is

Y (m(I’'+R)—m(R)

ReE[m]

which is also the divisor of f o [m]. Therefore, we have up to a constant in K x,
fo[m]=g". Now let S € E[m]. We have for any X € E,

g(X +8)™ = f(lm]X + [m]S) = f([m]X) = g(X)™

Therefore, if we consider the function g(X +5)/g(X) as a function of X | it must
be a m-th root of unity. But since there are only m possible values, this function
is a morphism E — P! which is not surjective, so it is constant. Therefore, we,
have a well defined pairing

em : E[m] x E[m] = pim,

defined by
g(X +9)

9(X)
Theorem 8. The Weil e, pairing satisfies the following
(a) 1t is bilinear

em(S,T) =

€m(S1 =+ SQ,T) = em(Sl,T)em(Sg,T)



em(S,T1 +T2) = en (S, T1)em (S, Tz)

(b) It is alternating
em(T,T) =1

(c) It is nondegenerate: If €,(S,T) =1 for all S € E[m]|, then T = O
(d) It is Galois invariant

em (9, T)” = en(S7,1T7) Vo € Gk
(e) It is compatible:
emm (S, T) = em([m']S,T)
for all S € Elmm/] and T € E[m).

The proof is not useful for our purposes and omitted. An important corollary
is that part (a) implies that if S, T generate E[m]|, then e,,S,T is a primitive
m-~th root of unity.

4 Application to Cryptography

4.1 Three-way Diffie-Hellman

The reader is likely familiar with the Diffie-Hellman key exchange algorithm,
which allows Alice and Bob to securely exchange an unspecified key. The Weil
pairing provides a 3-way key exchange system (invented by Joux) but the pairing
must be slightly modified. This is because the Weil e,, pairing is alternating, i.e.
em(T,T) = 1. We want e,,(T,T) to be a primitive n” root of unity. One way
around this is to use a curve that has a distortion map, an isogeny ¢ : £ — F
such that there exists T' € E such that {T,¢(T)} is a basis for for E[n]. Then
we can define the modified Weil pairing

() 2 Eln] x Eln] = pn

<Pa Q) = en(Pv ¢(Q))

Then we have (T, T) is a primitive n*" root of unity.

Here is how the Tripartite Diffie-Hellman key exchange works. Alice, Bob,
and Carl agree on a finite field Fy, a prime p, an elliptic curve E/F, that has a
distortion map, and a point T' € E(F,)[p]. Alice, Bob, and Carl choose secret
integers a,b,c. Alice computes A = [a|T, Bob computes B = [b]T, and Carl
computes C' = [c]T, and each publishes these points. The key is (T, T)*¢. Alice
computes (B, C)®, Bob computes (A,C)?, and Carl computes (A, B)¢. Tt is
easily verified that this works. This is secure because the elliptic curve discrete
logarithm problem is believed to be secure.



