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Abstract. I will explain how a Timing Attack on RSA works. I will review what RSA is, and then
describe five ways that computing systems save time. These timesavers are exponentiation by squar-

ing, the Chinese Remainder Theorem, Sliding Windows, Montgomery Representation and Karatsuba

Multiplication. Then I will outline a basic timing attack that takes advantage of these timesavers.

1. A Review of RSA encryption

RSA is a public key cryptosystem that depends on a trapdoor function, a function that is easy to
compute in one direction and is extremely difficult in the other direction. RSA works because multiplying
two large prime numbers takes time but it definitely doable, but factoring a multiple of two large primes
is almost impossible to do in polynomial time. The two people who want send messages to each other
are Alice and Bob and our eavesdropper is aptly named Eve.

Alice chooses two primes p and q and multiplies them into part of the public key N , where N = pq.
She computes the totient function of N , which is φ(N). Then Alice selects her public encryption

exponent e so that it is gcd(e, φ(n) = 1 and e ≤ N . Alice also
Alice also chooses a private decryption exponent d so that de ≡ 1(mod n).
Bob is trying to send the message m, so he sends a ciphertext c where c ≡ me(mod N). Alice decrypts

c by calculating m ≡ cd(mod n).

2. RSA Optimizations

RSA takes a long time to compute. The longer p and q are, the longer N becomes and the more time
it takes to compute the other variable. A common size for p and q is 512 bits, and each product almost
doubles in length. Luckily, Alice Bob have four different methods to optimize their multiplication.

2.1. Exponentiation by Squaring. The standard method for fast exponentiation is the squaring and
multiplying method. When trying to compute cd(mod N) we first write N in binary so that

d = bk...b0.

Then we can define a sequence rk+1...r0 by setting rk+1 = 1 and then recursively defining

r2i = r2i+1x
bi

for i = k, ..., 0 wherer0 = xd.
What this function calculates is all the powers of two that needs to be computed, and multiplies lower

powers together to find higher powers. To avoid saving and computations with long numbers, we reduce
by modN at every step. Overall, Alice or Bob have to perform the squaring approximately operation
a total of log2 d times and multiply half as many times. In big O notation, exponentiation by squaring
should take O((d log c)n).
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2.2. Chinese Remainder Theorem.

Theorem 2.1. When we have a number N = pq where p and q are distinct primes, for any pair of
positive integers x1 and x2 where x1 ≤ p and x2 ≤ q, there is a unique number x which is less than N
and x1 = x (mod p) and x2 = x(mod q)

The Chinese Remainder Theorem helps compute m = cd(mod n) in a faster way. Recall that p ≤ q
and e is an integer such that xe ≡ 1(mod N). first compute and store the following values:

dp = e−1(modp01)

dq = e−1 mod (q-1)

and

q−1 = q−1 (mod p)

.
In the next step, figure out what m is by splitting m into two parts: m1 and m2.

let m1 = cdp(mod p)

and

let m2 = cdq (mod q)

. Calculate h = q−1 · (m1 −m2) (mod p) Finally, calculate m = m2 +m1.

2.3. Sliding Windows. Sliding Windows is another way to raise numbers to a high power in shorter
amount of time. In this section we will be computing y = xE .

For this algorithm to work, we need to write the exponent E in binary form just like in exponentiation
by squaring. The binary expansion of d would look like

E = (dn−1dn−2...d1d0)

Then, partition d into Fi words or windows of length L(Fi). The Fi’s are just parts of the binary
representation of E. The total number of windows is represented is k, so

i = 0, 1, ..., k − 1.

The nice thins about windows it that they all do not have to be the same size, and it is okay is some of the
windows have to length at all. However, the windows that are of nonzero length must have a significant
digit, or leftmost digit equal to one because a window with a significant digit of one is thought to have a
length of zero.

d = L(Fi)max

Which means that d is the length of the longest window. Calculate and store xω where

ω = 1, 2, 3...2d − 1.

After storing all of the xω’s, calculate

yk−1 = xFk−1

For every i from k − 2 to 0 , calculate

yi−1 = y2
L(Fi)

i

until i = 0.
If Fi 6= 0, then y = y ∗ xFi . This algorithm will then return y = xd.
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2.4. Karatsuba’s Algorithm. Karatsuba’s Algorithm multiplies two large numbers together by split-
ting the number up into three smaller products. Say that we are trying to compute P = N0 ·N1. Break
each of the factors into parts in terms of integers a0, a1, b0 and b1.

N0 = a0 + a1ω

and

N1 = b0 + b1ω

so that a0 ≤ ω and b0 ≤ ω for a random number ω.

Because of general multiplication rules:

N0 ·N1 = a0b0 + (a0b1 + a1b0)ω + a1b1ω
2.

This looks like we need four multiplications but we actually only need two because

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1.

a0b0 and a1b1 already have to be calculated for N0 ·N1 so we only have to do two multiplications. Addition
is much faster to do, so the extra addition does not significantly increase the time.

2.5. Montogomery Representation. Montgomery Representation is a way to save time during mod-
ular multiplication. This is used not only used by RSA but is also implemented in Diffie-Helman and
ElGamal.

Definition 2.2. Montgomery Domain In modulus N let x be an integer in the ring Z/nZ. Let R = 2k

where k is now the number of bits in n. Move x into the ring by calculating x′ = xR(mod N). To regain
the original value of x, divide by R. N has to be an odd number so that it is relatively prime to R and
R can divide.

Regular multiplication with factors a and b would lead to a product of ab(mod N). The Montogomery
Representations of a and b are a′ and b′ respectively.

a′ · b′ = aR · bR = ab ·R2(modN).

A single division of that product by R would lead to abR (mod N). Lets let cab.
To easily divide R, there is an algorithm called the Montgomery Reduction. If the binary representation

of ab has k zeroes on the least significant side, R = 2k can be found by shifting right by k positions. If
there are ones, then we have to add some number t to ab to make the least significant sides add up to
zero. Here are three conditions that t needs to have:

(1) t must be a multiple of n
(2) the addition of t cannot change the value of c(modN) (which it won’t if t is a multiple of n).
(3) c+ t = 0(mod R); t is the opposite of c (mod R).

By the first and third conditions,

ab+ nt = 0(mod R) so t = −ab/n(mod R).

Now we can find another value ni = −1/n(modR) so ti = −abni(modR).
The Montogomery Reduction Algorithm works in three steps:

(1) ti = cni
(2) ab = ab+ ti ∗ n
(3) ab = ab/R

If c ends up being larger than n, subtract n from the c. This extra step ensures that the product is in
the range [0, n).

Montgomery Multiplication saves times because three integer multiplications with numbers comparable
length takes about as much time as one modular multiplication with numbers of this length. Werner
Schindler realized that extra reductions are more likely when the product is closer to R. He proved that
the probability is:

Pr[extra reduction] = ab (mod R)/2R.

This means that as the product ab approaches either of the factors of R or N from the left, the probability
of a reduction increases and the time will be longer. On the other hand, if the product is a little over one
of the factors, the probability of a reduction greatly decreases.
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3. Attack on Montgomery Reduction and Karatsuba’s Algorithm

This attack only works when Alice and Bob are using the Chinese Remainder Theorem to save time.
One server that uses the Chinese Remainder Theorem is OpenSSL, which is what David Brumley and
Dan Boneh’s paper is mostly concerned with.
In this method, Eve is trying to decrypt some ciphertext g by using the tricks above to approximate q,
where q is the smaller prime factor of N .
RSA as implemented by OpenSSL does two important things that are exposed through this attack

(1) RSA utilizes Montgomery Reductions, so a time difference due to the extra reduction is noticable.
(2) RSA regularly uses Karatsuba’s Algorithm to multiply numbers that are approximately the same

size and uses regular multiplication for numbers that are different lengths. Karatsuba is faster
that regular multiplication so we can measure the time to find big descrepancies in timing.

3.1. Comparing Times. In this timing attack, we are decrypting a ciphertext g. From the section on
Montogomery Reduction, recall that if g is below a multiple of p or q, one of the factors N then the
probability of an extra reduction is higher but if g is just above a multiple of p or q then the number
of extra reductions becomes lower. Since the exact factor doesn’t matter, I will only refer to factor q.
With Karatsuba, when g is just above a multiple of q, when g(modq) is very small so it will probably
be multiplied to a much larger integer. Then RSA will utilize a slower normal multiplication. On the
flip side, if g is just below a multiple of q, then g(modq) will be large and since it is more likely to be
multiplied to another large number, a faster Karatsuba’s Algorithm will be used. To sum, a ciphertext g
that is just a little lower than a multiple of q will take more less using Karatsuba’s Algorithm but more
time with Montgomery Reductions.

3.2. Outline of the Attack. Let N = pq with q ≤ p. We will try to guess bits of q one at a time, from
the most significant bit, which refers to larger powers, to the least significant bits, which refers to the
bits closer to one. After we find most of the significant bits, there is a lattice based reduction algorithm
to find the rest of the factor called Coppersmith’s Method. Normally, the guess g of q starts with a
number between 2512 and 2511 . Then we time all the possible combos for the first 2-3 most significant
bits and plot time versus value of the bits. The very first peak is the reveals the value of q, since the time
gets slower right up to q and then drops when it becomes lower than q. Say that we have the top i − 1
bits, and set g to now be an integer that has the same top i − 1 bits as q but the rest of the bits are 0.
Then we can find the ith bit in the following way:

(1) let ghi be the same as g except make the ith bit of ghi one. If the ith bit of q is actually one,
then g ≤ ghi ≤ q. But if the ith bit of q is zero, then g ≤ q ≤ ghi.

(2) Find ug = gR−1modN and ughi
= ghiR

−1. This step is just to reverse the Montogomery
Reduction since RSA will multiply both of those numbers by R.

(3) Measure the time it takes to decrypt ug and ughi
. Set t1 be the time it takes to decrypt ug and

let t2 be the amount of time it takes to decrypt ughi
.

(4) Find the difference between t1 and t2. If the ith bit of q is 0, then this difference will be large
and if the ith bit of q is 1 then the timing difference will be small. Large and small are subjective
terms, but sending several random values of g and observing timing values will give a good sense
of what large and small mean in this context.

4. Why should we care about timing attacks?

Timing attacks are extremely tedious and depend on several lucky factors, like actually being able
to time how long decryption takes and having access put carefully selected keys through this system.
If timing attacks were actually successful against RSA, then RSA would not be the most widely used
public key cryptosystem. Billions of computers use RSA to secretly pass information. It is important to
keep delving into timing attacks against RSA to potentially find weaknesses in the system and to better
understand the overlooked time saving techniques.
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