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Abstract. In this paper, we will introduce the theory of Elliptic Curves. We will start by
studying the group law. Afterwards, we will look at torsion points and the properties that
they have. Then, we will study the applications of the theory of elliptic curves within the
field of cryptography where we will examine the Elliptic Curve Discrete Logarithm Problem
which asks us to find some integer n such that given points on the Elliptic Curve Q and P
Q = nP , the analogue of the Discrete Log Problem in Z/pZ. Then we will solve the Elliptic
Curve Diffie-Hellman which is essentially the same as it is in F×

p . Finally, we will extend the
Elliptic Curve Diffie-Hellman by using the Weil-Pairing which allows a Key-Exchange between
3 persons rather than just 2.

1. Preliminary Definitions

Definition 1.1. Elliptic Curve: An elliptic curve over a field is a set of solutions to any
equation of the form y2 = x3 + ax + b (this is known as Weierstrass form) together with a
point at infinity denoted by ϑ.
One of the criterion of the elliptic curve is that the discriminant, denoted by ∆, satisfies ∆ 6= 0
where ∆ = 4a3 + 27b2.
The graph of an elliptic curve over the field R (the real numbers) should look like this:

The points on an elliptic curve form a group under addition; however, the algorithm to
compute the sum of two points on an elliptic curve is not as simple as addition in R or F×p .

Definition 1.2. The sum of two points on an elliptic curve: To take the sum of two points
on an elliptic curve, we draw a line through the two points we would like to add. Then we
find the third point of intersection and reflect it over the x-axis. That point is then the sum.
To make this easier to visualize:
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More generally, an algorithm to compute the sum of the two points on an elliptic curve
would go as follows,

(1) Select two points P = (x1, y1) and Q = (x2, y2)
(2) Then take the line defined by the equation L : y = ( y1−y2

x1−x2
) · x+ (y1 − x1(( y1−y2

x1−x2
)))

(3) Next, find the point of intersection of L and the elliptic curve E, the point that is not
P or Q

(4) Now, negate the y-coordinate of the point you find
(5) So P ⊕ Q = (x3,−y3) where x3 and y3 are the coordinates of the third point of

intersection of L and E.

Now, in order to double a point on E we add a point to itself we add P ⊕P . We take the line
tangent to P on E and then find the intersection point on the graph, negate the y-coordinate
and we are done. The formula for the slope of the line comes from a simple calculus problem
of applying implicit differentiation to both sides of the equation of the elliptic curve equation

in Weierstrass form. The slope of the line is m =
3x2

1+a

2y1
. Similarly, to find the intercept of that

line just plug in the coordinates of P = (x1, y1) to get b = y1 − 3x2
1

2y1
· x1. This result is trivial.

Definition 1.3. The point at infinity In an elliptic curve we define the point at infinity
to be the point that results in summing any two points with the same x coordinate, i.e.,
P = (x1, y1)⊕ P ′ = (x1,−y1). The point at order infinity is denoted by ϑ

By adding the point at infinity this acts as an identity and then an elliptic curve forms a
group under addition. And P−1 = P ′ ∈ E such that P ′ ⊕ P = ϑ. Let’s make this idea more
formal and then prove it.

Theorem 1.4. (E(F),+) is a group where F is a group under addition.

Proof. In order to prove this theorem, we must prove that all of the group axioms hold. First,
we must prove closure. The sum of two points on an elliptic curve is either ϑ or another point
on the elliptic curve. Similarly, ϑ + P ∈ E = P . Next, by definition we have that ϑ is the
identity. We also have that inverses have to be true, because ∀P ∈ E(F)∃P ′ s.t. P ⊕ P ′ = ϑ.
Because ϑ lies on all vertical lines we get that if P = (x1, y1) ∈ E(F), then P ′ = (x1,−y1)
which is also in E(F). Lastly, we must show associativity. Associativity is very easy to show,
but it is very tedious. So this proof is left as an exercise for the reader as we have to do a lot
of continuous addition. �

Definition 1.5. n-torsion points An n-torsion point on an elliptic curve is a point P such
that nP = ϑ. The set of all n-torsion points is denoted by E[n].
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We can show that this is a group with the following theorem.

Theorem 1.6. The set E[n] forms a group under addition on Elliptic Curves. More generally,
the set of n-torsion points in any group forms a subgroup under the associated operation where
in any group the set of n-torsion points are the points g ∈ G s.t. g · n = e where e is the
identity. This set of points is similarly denoted as G[n].

Proof. Because we know that E(F) is a group under addition it suffices to show that G[n] is
a group for any other group G.

So again, let’s show that the group axioms hold.
First, ϑ or e, the identity in any group is obviously an n torsion points as e+···+e = e·n = e.

So because we have e ∈ G[n] which is already e ∈ G we have that the identity is in G[n].
Next, let’s show that closure holds given g, h ∈ G[n]

n · g = e
n · h = e

n · h+ n · g = e+ e = e = n(g + h)

Hence g + h ∈ G[n] is also an n-torsion point. Now we have to show inverses which is easy,
because g is an n-torsion point if and only if g−1 is, seen here. If g is an n-torsion point then

n(g + g−1) = n(e) = e = g(n) + g−1(n) = g−1 · n

So g−1 is also an n-torsion point. Then if g−1 is an n-torsion point then:

n(g + g−1) = n(e) = e = g(n) + g−1(n) = g · n

Hence g is an n-torsion point as well. �

Similarly, we can also prove that the set of n-torsion points, E[n] is a vector space. This
notion of defining E[n] as a vector space will be very useful later on when working with the
Weil Pairing.

2. Elliptic Curve Discrete Log Problem

Now that we have discussed n-torsion points and multiples of points on elliptic curves we can
introduce the Elliptic Curve Discrete Logarithm Problem, abbreviated as the ECDLP. Recall
the discrete logarithm problem which was the basis of the Diffie-Hellman Key Exchange in
F×p :

Definition 2.1. The Discrete Logarithm Problem: The Discrete Logarithm Problem is the
problem to take some prime number p and some primitive root g ∈ F×p and some other h ∈ F×p
to find some x such that:

h ≡ gx mod p

Now, let’s rigorously define the Elliptic Curve Discrete Log Problem.

Definition 2.2. ECDLP: Let E(Fp) be some Elliptic Curve defined over the Galois Field Fp

where p ∈ Z is a prime. Let P,Q ∈ E(Fp) then the goal of the ECDLP is to find some n such
that Q = n · P . This is analogous to F×p where we write

n = logP (Q)
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Now the log function here is not well-defined because we could select some point that is
indeed not a multiple of P and we would not get a value. However, when using the log
function in Cryptography with Elliptic Curves it is always in a context such that the problem
is solvable, but not always easily.

Remark 2.3. One other difficulty when dealing with the logarithm function for elliptic curves
is that there can be more than one value. For example, look at the n-torsion points we
discussed earlier. If P ∈ E(F) and P satisfies P ∈ E(F)[n] then P ∈ E(F)[2n] and E(F)[3n]
and E(F)[kn]∀k ∈ Z.

However, because we are going to be working with finite fields, like Fp we can easily get
around this. Now, in order to remedy this problem we must calculate the smallest k ∈ Z such
that i− j = k and i · P = j · P P ∈ E(F)[k].

Hence we define all of our solutions to the Q = nP has n of the form n′ + c · k where n′ is
our first and simplest solution. This makes logP (Q) = n′ ∈ Z/kZ

We can also see that given two points Q,R ∈ E(Fp) we get logP (Q+R) = logP (Q)+logP (R)
so the logP function is additive. We can formalize this with the following theorem:

Theorem 2.4. The map:

logP : E(Fp)→ (Z/kZ)

defines a homomorphism across the groups E(Fp) and Z/kZ.

This proof is left as an exercise for the reader.

3. Elliptic Curve Diffie-Hellman

Now, recall the Diffie-Hellman Key Exchange from cryptography in F×p . We get that Alice
and Bob each start with a generator g of F×p . Now Alice chooses some arbitrary integer a ∈ F×p
and Bob chooses some other arbitrary integer b ∈ F×p .
Now, Alice computes

A = ga mod p

and Bob computes

B = gb mod p

Now, they publicly exchange A and B and then Alice computes

Ba mod p ≡ (gb)a mod p ≡ gab mod p

and Bob computes

Ab mod p ≡ (ga)b mod p ≡ gab mod p

So they both obtain the shared key gab mod p. Now, the only way an eavesdropper whom
we’ll call Eve can crack this is by completing the Discrete Log Problem and similarly for
Elliptic Curve Diffie-Hellman where Eve must solve the Elliptic Curve Discrete Log Problem
in order to break the code.

Definition 3.1. Elliptic Curve Diffie-Hellman Take two people Alice and Bob who publicly
exchange some elliptic curve over E over Fp so they both choose some P ∈ E(Fp).
Now, Alice will pick some integer a and Bob will pick some other integer b. Alice will compute

A = aP

and Bob will compute

B = bP
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So Alice and Bob publicly exchange A and B. Now Eve can see both of these values, but will
not be able to calculate a or b, because that will require taking logP (B) and logP (A) to find
a and b which requires solving the elliptic curve discrete log problem.
So now, Alice will calculate

bA = b(aP )

and Bob will calculate

aB = a(bP )

This results in a shared key of abP which structurally speaking is very similar to the result
we got in the regular Diffie-Hellman key exchange over F×p .

Now, we can introduce Elliptic Curve ElGamal.

Definition 3.2. Elliptic Curve ElGamal: First, Alice and Bob publicly exchange information
and decide an elliptic curve E, a field to have it over, Fp and a point P on that curve.

Then, Alice chooses an arbitrary a which she will not tell Bob and then she calculates
A = aP and publishes that.

Bob chooses his cipher-text M that he wants to send to Alice and then he takes some
number b and computes B = bP and then B′ = M + bA to wit he publishes the pair (B,B′).

To decrypt this Alice calculates B′−aB to get M . This works, because B′ = M+bA−aB =
M + baP − abP = M + baP − baP = M + ϑ = M

4. The Weil Pairing

In order to define a Weil Pairing we first must get familiar with a divisor of an elliptic curve.

Definition 4.1. Divisor Function: A divisor function of another function can be written as
a summation of points multiplied by the exponents for their multiplicities and the order of
their pole.

Example. Take the function f(x) =
∏k

i (x−ri)mi∏h
i (x−qi)ni

to wit the divisor function, denoted by div(f(x))

is written as the formal sum

div(f(x)) = (
∑k

i mi[ri])−(
∑h

i ni[qi]) = m1[r1]+m2[r2]+ · · ·mk[rk]−n1[q1]−n2[q2]−···−nh[qh]

Now we can also define a rational function of points P = (x, y) ∈ E, so in a similar manner
we define a divisor of an elliptic curve.

Definition 4.2. Divisor of an elliptic curve: To define a divisor we write

div(f) =
∑

P∈E kP · P
Now, the degree of this divisor, denoted by deg(D) is the sum of those coefficients, or more
formally

∑
kP . Now, the sum of a divisor on an elliptic curve is just

∑
nkP (with no brackets),

so a linear combination of the points on an elliptic curve.

Theorem 4.3. Let D be a divisor on an Elliptic Curve E, written as

D =
∑
nkP

then D is a divisor of a rational function on an elliptic curve if and only if deg(D) = 0 and
sum(D) = ϑ, the point at infinity.

Now, we can begin defining the Weil Pairing.
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Definition 4.4. The Weil Pairing : Take two n-torsion points P,Q on an elliptic curve E.
Now, define two rational functions on the elliptic curve E, RP and RQ such that their divisors
are div(RP ) = n[P ] − n[ϑ] and div(RQ) = n[Q] − n[ϑ]. Now, the Weil Pairing of two points
P and Q is defined as

en(P,Q) =
RQ(Q+S)

RQ(S)

/
RQ(P−S)

RQ(−S)

Now, let’s take a look at several interesting properties of the Weil Pairing:

Theorem 4.5. Properties of The Weil Pairing:

(1) en(P, P ) = 1
(2) en(P,Q) = en(Q,P )−1

(3) en is bilinear, i.e., given P,Q,R ∈ E[n] en(P + R,Q) = en(P,Q) · en(R,Q) and
similarly, en(P,Q+R) = en(P,Q) · en(P,R)

(4) en(P,Q)n = 1, i.e., it is an n-th root of unity given any two n-torsion points
(5) If, ∀Q ∈ E[m], em(P,Q) = 1 then P = ϑ ∈ E[m].

Now, because E[n] is a vector space as we proved earlier we can see that given two points
P1, P2 ∈ E[n] which form a basis of E[n] and if we know the value of their Weil Pairing then
we can calculate the value of any other Weil Pairing of element of E[n].

To do so, because P1 and P2 form a basis for the n-torsion points we get ∀P ∈ E[n]∃aP , bP ∈
Z/nZ s.t. P = aPP1 + bPP2 and similarly for some Q ∈ E[n]∃aQ, bQ ∈ Z/nZ s.t. Q =
aQP1 + bQP2.

So now, we can write em(P,Q) = em(P1, P2)
det

aP aQ
bP bQ


= em(P1, P2)aP bQ−aQBP , There are

a couple of other efficient algorithms of calculating the Weil Pairing which I encourage you to
look up; however, they will not be relevant for now.

One application of the Weil Pairing is that it can reduce the ECDLP in E(Fpk) to being
equivalent to solving the Discrete Log Problem in F×

pk
. To do this we use the MOV Algorithm

written by Menezes, Okamoto, and Vanstone. First, however, we have to define the embedding
degree.

Definition 4.6. Embedding Degree: Choose some elliptic curve E over Fp and choose some
arbitrary m ∈ Z≥0 such that p - m. Then the embedding degree of E with respect to m is
defined to be the minimal value of k so that

E(Fpk)[m] ∼= Z/mZ× Z/mZ

Now, to set up the MOV algorithm we must take some point P ∈ E(Fp) such that P is a
j-torsion point to wit j is a large prime greater than

√
p+ 1.

Definition 4.7. MOV Algorithm

(1) Let N = #E(Fpk)
(2) Now take some point Θ ∈ E(Fpk), but not in E(Fp)
(3) Now, because P (the same P we described in our set up) is a j-torsion point we know

that E(Fp) has a j-torsion point. So now, j | #E(Fpk) then we can multiply Θ to get

a new point N
j

Θ

(4) Then given your point P calculate the Weil Pairing in F×
pk

to get

p = ej(P,
N
j

Θ)



THREE PERSON DIFFIE-HELLMAN KEY EXCHANGE 7

q = ej(Q,
N
j

Θ)

(5) So now we have that q = pn mod pk. This is because we can write the two Weil
Pairings in terms of their basis, P1 and P2 such that P = aPP1 + bPP2 and N

j
Θ =

aN
j

ΘP1 + bN
j

ΘP2 such that ej(P,
N
j

Θ) = ej(P1, P2)
aP bN

j Θ
−aN

j Θ
bP

and ej(Q,
N
j

Θ) =

ej(nP,
N
j

Θ) = ej(P1, P2)
anP bN

j Θ
−bnP aN

j Θ

(6) Now we can use Pohlig-Hellman or some other algorithm to solve q = pn mod pk and
then we have n and have solved the ECDLP

5. The Modified Weil Pairing

The Weil Pairing can be quite problematic in cryptography because it is usually rendered
useless because in Elliptic Curve cryptography we usually want to deal with pairs of points
like cP and kP , that are each multiples of each other or have some sort of common point that
they are a multiple of and we know that en(c · P, d · P ) = 1.
To fix this define

φ : E[m]→ E[m]

such that φ(P ) 6= a · P where a ∈ Z. So now we can calculate

em(cP, φ(dP )) = em(cP, dφ(P )) = em(P, φ(P ))cd

Now, let’s define j to be some prime greater than 2. Given some Elliptic Curve E we can
take some j-torsion point P and define a function φ : E → E.

Definition 5.1. Now, φ is a j-distortion map for the point P if φ(nP ) = nφ(P )∀n ∈ N and
the Weil Pairing of the points P and φ(P ) is a primitive root of unity.

Now from this we can define the modified Weil Pairing which is denoted by ên to help us
more with cryptography where we can take an elliptic curve E and a j-torsion point.

Definition 5.2. Relative to some map φ : E → E we can get

êj(P0, P1) = ej(P0, φ(P1))

and our two points P1 = aP and P2 = bP are each separate multiples of P .

6. Tripartite Diffie-Hellman Key Exchange

Using the power of the Weil pairing we can now extended the Diffie-Hellman to three people.
So now, assume we have three people trying to talk to each other, Alice, Bob and Charlie.
So starting from the same point at which Alice chooses some integer a, Bob chooses some
integer b and Charlie chooses some integer c. They each publicly decide on some point P on
an elliptic curve E(Fr) such that P is a j-torsion point to wit Alice computes

A = aP

and Bob computes

B = bP

and the Charlie computes

C = cP

Now, each of the three of them publish A,B and C. Using the Weil Pairing, Alice will then
compute

ên(B,C)a
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then Bob computes

ên(B,C)b

and Charlie computes

ên(A,B)c

Now, we have that Alice’s value is ên(bP, cP )a = ên(P, P )abc, similarly we can see that this is
also the case for Bob’s value and Charlie’s value. Hence the shared value for Alice, Bob and
Charlie is

ên(P, P )abc

Now, we can show that this system is secure, because the security relies on Eve being able
to solve the ECDLP. Because if Eve can solve the ECDLP she can easily find a, b and c.

However, breaking the 3 person Diffie-Hellman also has another angle to it. Eve has ên(P, P )
and knows aP so she can find ên(aP, P ) = ên(P, P )a. Hence Eve can recover a if she uses
some algorithm to solve the Discrete Logarithm Problem in the field that the elliptic curve is
over, Fq.
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