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1. Summary

This paper will focus on different types of key exchanges involving more than one party.
This is useful during multi-party information exchanges to avoid holding many individual
keys for each participant in the exchange. One way to accomplish these multi-way key
exchanges is by generalizing Diffie-Hellman to more parties. However, in practice, this
method isn’t used for these key exchanges as it requires multiple rounds of information
exchange. Therefore, we will be focusing on better ways of accomplishing this exchange
(and we will find elliptic curves cropping up quite frequently). For example, we can find
an analogue for the Diffie-Hellman key exchange (and, by extension, ElGamal) in elliptic
curves. This will be by using elliptic curve addition instead of modular exponentiation
[Kob87] [AA13]. Lastly, there is a way, using pairings of elliptic curves, to exchange a
private key between 3 people over an insecure channel with only one round of information
exchange [Jou00].

2. Generalizing Diffie-Hellman to an n-way Key Exchange

Generalizing Diffie-Hellman to make it a multiparty key exchange is straight forward.
However, it requires multiple rounds of information exchange. In fact, where n is the number
of parties involved, it takes n−1 rounds of communication to perform this exchange. Before
we go into multi-way Diffie-Hellman, let us refresh our memory of two-way Diffie-Hellman.

(1) Alice and Bob agree on a prime p and g, a primitive root of p.
(2) Alice and Bob choose random integers a and b, respectively.
(3) Alice computes A = ga (mod p), and shares A. Bob computes B = ga (mod p), and

shares B.
(4) Finally, Alice computes that the key equals Ba (mod p) and Bob computes the same

key with Ab (mod p).

Now, suppose n parties wish to construct a shared key.

(1) The parties agree on a prime p and a primitive root g.
(2) Party i chooses a random ai ∈ Fp for all i.
(3) Party i computes and sends gai (mod p) to party i+ 1 (mod n) for all i.
(4) Then, party i computes and sends gai·ai−1 (mod p) to person i+ 1 (mod n) for all i.
(5) Continuing this, they will get a shared key: ga1·a2·...·an (mod p).

3. Elliptic Curve Diffie-Hellman [AA13]

We can use Diffie-Hellman over any finite Abelian group, but it turns out elliptic curves
over Fp work well. This is mainly because the index calculus attack doesn’t work. Here are
the steps to create a shared key using Elliptic Curve Diffie-Hellman:
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(1) Alice and Bob agree on a prime p, an elliptic curve E over Fp, and a point P .
(2) Alice and Bob compute their private keys, a and b, respectively.
(3) Alice shares A = P · a and Bob shares B = P · b, their respective public keys.
(4) Alice and Bob both compute P · ab, the shared key.

Just like normal Diffie-Hellman, this also works with more than 2 people, although is requires
multiple rounds of information exchange. Something interesting to note is that in some cases,
Elliptic Curve Diffie-Hellman is easy to break. It was shown in [Jou00] that the discrete
logarithm problem can be solved in polynomial time over elliptic curves over Fp with exactly
p points. Some other elliptic curves over Fp also reduce to an extension of Fp, making them
vulnerable to attack using the Menezes, Okamoto, Vanstone (MOV) reduction and the Frey,
Rück (FR) reduction [Jou00], of which the FR reduction is faster. It turns out that these
reductions are closely related to a three-way key exchange.

4. The Weil Pairing

Before we talk about the Weil pairing on elliptic curves, we need to talk about divisors
and function fields.

Definition 4.1. [Jou00] The function field K(E) of an elliptic curve E over a field F is the
set of rational maps g(X, Y ) which return an element of F , and with X and Y satisfying
the equation of E.

Definition 4.2. [Jou00] If a point D on a curve E can be expressed as a sum

D = a1 · P1 + a2 · P2 + . . .+ an · Pn

then we call D a divisor. Furthermore, if a1 + a2 + . . .+ an = 0, then D is a divisor of degree
0.

Definition 4.3. [Jou00] Note that because any function f ∈ K(E) has the same number of
zeroes as poles (including multiplicity), we can add the zeroes and subtract the poles to get
a divisor of degree zero. We call this divisor div(f) the principle divisor of f .

In fact, to test if a divisor D of a function f is principal by evaluating it directly over E.
The result is the point at infinity if and only if D is the principal divisor of f . With that
out of the way, we can now define the Weil pairing, the basis of our three-way key exchange.

Definition 4.4. [Jou00] The Weil Pairing is a bilinear function from the torsion group E[n]
to the multiplicative group µn of the nth-roots of unity in some extension of Fp. Given P
and Q, two n-torsion points on an elliptic curve E, their pairing is defined to be

en(P,Q) =
fP (Q)

fQ(P )

where fP and fQ exist such that div(fP ) = n · P − n · O, div(fQ) = n(Q)− n(O), and O is
the point at infinity.

The Weil pairing also has some interesting properties. It is non-degenerate, meaning that

e(aP, bQ) = e(P,Q)ab
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5. Three-Way Elliptic Curve Diffie-Hellman

Alice, Bob, and Charlie are looking to construct a shared key with only one round of
information exchange. They all agree on an elliptic curve E and a point P . Just like normal
Diffie-Hellman, they choose private keys a, b, and c respectively. Then, Alice computes and
sends PA = aP to everyone else, Bob computes and sends PB = bP to everyone else, and
Charlie computes and sends PC = cP to everyone else. Now we need a function F such that

F (a, PB, PC) = F (b, PA, PC) = F (c, PA, PB)

and that F (a, PB, PC) is hard to calculate given only PA, PB, and PC . Using the Weil pairing,
we can find such an F

FW (x, P,Q) = en(P,Q)x.

It is easy to check that this function indeed satisfies the requirements, given that the Weil
pairing is non-degenerate. Unfortunately, it is not this easy because that would mean the
shared key is always 1. So, instead, we use two points P and Q. Alice, Bob, and Charlie
also compute their respective powers of Q, and the shared key is

F (a, PB, QC) = F (b, PA, QC) = F (c, PA, QB).

6. An Example

Say Alice, Bob, and Charlie agree on the curve y2 = x3 + x over the field Fp2 over x2 + 1
where

p = 48267777815770043535044410856360047038953960729113574

29530850774144832990078179684573230519991072031530329

37333023591271636050696817523671646492380723773419011.

Also, we chose p in such a way that

q = 593917583375891588584754753148372137203682206097

divides p+ 1. We choose points P and Q of order q:

P = (4419030020021957060597995505214357695235725551511568

68511701918183168420954869076254808843953176168634019

27551006066189692708095924815897927498508535823262371,

26090947680860922395540330613428690525406329616428470

73807303133884126088547738030713042022034220476530186

5163480203757570223664606235381540801075563801118751)

Q = (4174183901517981791573276838146590144608495183505084

36411447781417311430237331232958577456865429161040089

806217226455983348248260335272068783343983410685645620,

85984079438328066829535503806402848425113755688042614

53460943539888201506845050435386547281506353153165721

0019063972911218641810155964304683033635085838106425i)

Using a = 4, b = 7, c = 28, we get the shared key.

F (a, PB, QC) = 21704655273258595020185058036714661585432952223857344835

67773957210551020200586870416066057916675619991969502192
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64185045830782800156145170386696601496318727119i

+18547967545356005000241995328735966990113791703635028416

23483761786522135284562773843989027568976094155038271048

94436481787700370161453899874562738321254026146

7. Conclusion

Whereas normal Diffie-Hellman is the easiest form of the key exchange to understand,
it generalizes to more parties poorly. Requiring n − 1 exchanges of information, it is in-
efficient. Elliptic Curve Diffie-Hellman is simply an analogue of Modular Exponentiation
Diffie-Hellman, with similar drawbacks. However, we can utilize the Weil pairing (or Tate
pairing) on elliptic curves to accomplish something similar to Elliptic Curve Diffie-Hellman,
but with only one round of information exchange, if three parties are involved.
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