
COMPLEXITY CLASSES

JERRY SUN

Abstract. Complexity Classes are a way to describe how hard a problem is. It is important
to Cryptography because many well known cryptosystems work because they are based off of
hard problems. El Gamal and RSA are both based off of problems that don’t have effiecient
solutions.

1. Definitions

Complexity Class: The set of problems that can be solved by an abstract machine M using
big O(f(n)) of resource R, where n is the size of the input.
The time complexity of an algorithm is usually used when describing the number of steps it
needs to take to solve a problem, but it can also be used to describe how long it takes verify
an answer (more on this in the NP section). There are many ways of finding time complexity.
One could figure out time complexity by determining how many times a particular line of
code executes in a program, or by figuring out how many steps a Turing machine takes when
solving the problem. Knowing the time complexity of an algorithm helps programmers and
computer scientists know if an algorithm is efficient or not. It helps us to know how long an
algorithm will take to give an answer.

1.1. Formal Definition. f(n) = O(g(n)) means there are positive constants c and k, such
that 0 ≤ f(n) ≤ c ∗ g(n) for all n ≥ k. The values of c and k must be fixed for the function
f and must not depend on n. Also known as O, asymptotic upper bound
The space complexity of an algorithm describes how much memory the algorithm needs in
order to operate. In terms of Turing machines, the space needed to solve a problem relates
to the number of spaces on the Turing machine’s tape it needs to do the problem.
Probabilistic Turing Machine: In computability theory, a probabilistic Turing machine is a
non-deterministic Turing machine which chooses between the available transitions at each
point according to some probability distribution.

2. Types of Complexity Classes

2.1. BQP. In computational complexity theory, bounded-error quantum polynomial time
(BQP) is the class of decision problems solvable by a quantum computer in polynomial time,
with an error probability of at most 1/3 for all instances.[1] It is the quantum analogue of
the complexity class BPP.

A decision problem is a member of BQP if there exists a quantum algorithm (an algorithm
that runs on a quantum computer) that solves the decision problem with high probability
and is guaranteed to run in polynomial time. A run of the algorithm will correctly solve the
decision problem with a probability of at least 2/3.

Date: December 8, 2019.
1



2 JERRY SUN

2.2. BPP. Informally, a problem is in BPP if there is an algorithm for it that has the
following properties:

It is allowed to flip coins and make random decisions It is guaranteed to run in polynomial
time On any given run of the algorithm, it has a probability of at most 1/3 of giving the
wrong answer, whether the answer is YES or NO

2.3. ExpTime. ExpTime is the set of all problems that can be solved in 2 to a polynomial
of the input

2.4. Polynomial Time. P is the set of all problems that can be solved in a polynomial of
the input.

2.5. Pspace. P is the set of all problems that take a polynomial amount of time based on
the input.

2.6. NP. the set of all decision problems whose solutions can be verified in polynomial
time; NP may be equivalently defined as the set of decision problems that can be solved in
polynomial time on a non-deterministic Turing machine.

2.7. NP-Complete. NP-complete problems a subset of NP. These are problems that are
equivalent to each other, meaning if you can solve one of them you can solve all of them.

2.8. NP-hard. a problem H is NP-hard when every problem L in NP can be reduced in
polynomial time to H; that is, assuming a solution for H takes 1 unit time, H’s solution can
be used to solve L in polynomial time. As a consequence, finding a polynomial algorithm
to solve any NP-hard problem would give polynomial algorithms for all the problems in NP,
which is unlikely as many of them are considered difficult.

3. Boolean Satisfiability problem (SAT)

In computer science, the Boolean satisfiability problem is the problem of determining if
there exists an interpretation that satisfies a given Boolean formula. In other words, it asks
whether the variables of a given Boolean formula can be consistently replaced by the values
TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the
formula is called satisfiable. On the other hand, if no such assignment exists, the function
expressed by the formula is FALSE for all possible variable assignments and the formula is
unsatisfiable.

4. Hamiltonian path Problem

he decision problem form of the knapsack problem (Can a value of at least V be achieved
without exceeding the weight W?) is NP-complete, thus there is no known algorithm both
correct and fast (polynomial-time) in all cases.



COMPLEXITY CLASSES 3

5. subset sum problem

In computer science, the subset sum problem is an important decision problem in com-
plexity theory and cryptography. There are several equivalent formulations of the problem.
One of them is: given a set (or multiset) of integers, is there a non-empty subset whose sum
is zero?
For example, given the set {-7,-3,-2,5,8}, the answer is yes because the subset {-3,-2,5}
sums to zero. The problem is NP-complete, meaning roughly that while it is easy to confirm
whether a proposed solution is valid, it may inherently be prohibitively difficult to determine
in the first place whether any solution exists.

6. Knapsack problem

The knapsack problem or rucksack problem is a problem in combinatorial optimization:
Given a set of items, each with a weight and a value, determine the number of each item to
include in a collection so that the total weight is less than or equal to a given limit and the
total value is as large as possible. It derives its name from the problem faced by someone
who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
The decision problem form of the knapsack problem (Can a value of at least V be achieved
without exceeding the weight W?) is NP-complete, thus there is no known polynomial-time
algorithm that works in general.

7. Subgraph isomorphism problem

The subgraph isomorphism problem is a computational task in which two graphs G and H
are given as input, and one must determine whether G contains a subgraph that is isomor-
phic to H. Subgraph isomorphism is a generalization of both the maximum clique problem
and the problem of testing whether a graph contains a Hamiltonian cycle, and is there-
fore NP-complete.d However certain other cases of subgraph isomorphism may be solved in
polynomial time.

8. Travelling salesman problem (decision version)

The travelling salesman problem (TSP) asks the following question: ”Given a list of
cities and the distances between each pair of cities, what is the shortest possible route that
visits each city and returns to the origin city?” It is an NP-hard problem in combinatorial
optimization, important in operations research and theoretical computer science.

9. P=NP Conjecture

The P versus NP problem is a major unsolved problem in computer science. It asks
whether every problem whose solution can be quickly verified (this means that it should be
solved in polynomial time) can also be solved quickly (again, in polynomial time).

10. Calculating O(n)

Now we will practice calculating the big o of some famous sorting algorithms and graph
theory problems.



4 JERRY SUN

10.1. Mergesort. Conceptually, a merge sort works as follows: Divide the unsorted list
into n sublists, each containing one element (a list of one element is considered sorted).
Repeatedly merge sublists to produce new sorted sublists until there is only one sublist
remaining. This will be the sorted list. In sorting n objects, merge sort has an average and
worst-case performance of O(n log n). If the running time of merge sort for a list of length n
is T(n), then the recurrence T (n) = 2T (n/2) +n follows from the definition of the algorithm
(apply the algorithm to two lists of half the size of the original list, and add the n steps
taken to merge the resulting two lists). The closed form follows from the master theorem
for divide-and-conquer recurrences.

10.2. Bubble Sort. Bubble sort, is a simple sorting algorithm that repeatedly steps through
the list, compares adjacent elements and swaps them if they are in the wrong order. The
pass through the list is repeated until the list is sorted. It first makes n comparison, which
brings the largest number to the the correct position, then it makes another n passes which
bring the second largest number to the pass. Overall it makes n passes of length n so it has
time complexity o(n2). The above picture shows an example of bubble sort.

11. Conclusion

Complexity classes are extremely useful in cryptography because, good cryptosystems are
based on hard problems and so we need to find how long it takes to solve these hard problems.



COMPLEXITY CLASSES 5

References

[1] Wikipedia contributors. (2019, September 22). NP-completeness. In Wikipedia, The Free Ency-
clopedia. Retrieved 05:47, December 8, 2019, from https://en.wikipedia.org/w/index.php?title=NP-
completenessoldid=917231396

[2] Wikipedia contributors. (2019, May 23). Complexity class. In Wikipedia,
The Free Encyclopedia. Retrieved 05:52, December 8, 2019, from
https://en.wikipedia.org/w/index.php?title=Complexityclassoldid=898430776

[3] Weisstein, Eric W. ”Graph Isomorphism Complete.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GraphIsomorphismComplete.html

[4] Wikipedia contributors. (2019, February 10). List of complexity classes. In
Wikipedia, The Free Encyclopedia. Retrieved 05:51, December 8, 2019, from
https://en.wikipedia.org/w/index.php?title=Listofcomplexityclassesoldid = 882711619


	1. Definitions
	1.1. Formal Definition

	2. Types of Complexity Classes
	2.1. BQP
	2.2. BPP
	2.3. ExpTime
	2.4. Polynomial Time
	2.5. Pspace
	2.6. NP
	2.7. NP-Complete
	2.8. NP-hard

	3. Boolean Satisfiability problem (SAT)
	4. Hamiltonian path Problem
	5. subset sum problem
	6. Knapsack problem
	7. Subgraph isomorphism problem
	8. Travelling salesman problem (decision version)
	9. P=NP Conjecture
	10. Calculating O(n)
	10.1. Mergesort
	10.2. Bubble Sort

	11. Conclusion
	References

