
HOMOMORPHIC ENCRYPTION

ISABELLE HONG

1. Introduction

An encryption scheme is homomorphic if it is possible to perform operations on
the ciphertext without altering the plaintext message or having access to the key.
A scheme ε must be able to generate a public key, encrypt plaintext, and decrypt
ciphertext. These algorithms are represented by KeyGenε, Encryptε, and Decryptε,
respectively. It also has the Evaluateε algorithm, which is able to output a ciphertext
ψ given the public key pk, a circuit C from a fixed set of circuits Cε, and some set of
ciphertexts Ψ = ψ1, ..., ψt. In this context, a circuit takes input values, which are then
processed through gates that each compute a function. The definition of homomorphic
encryption relies on correctness.

Definition 1 ([Gen09b]). A scheme ε is correct for circuits in Cε if, for any key pair
(sk, pk), any circuit C ∈ Cε, any plaintexts π1, ..., πt, and any ciphertexts Ψ = ψ1, ..., ψt
where ψ ← Encryptε(pk, πi), it is true that if

ψ ← Evaluateε(pk, C,Ψ), then

C(π1, ..., πt) = Decryptε(sk, ψ).

Now, we can formally define homomorphic encryption.

Definition 2 ([Gen09b]). ε is homomorphic for circuits in Cε if ε is correct for Cε and
(Decryptε) can be expressed as a circuit Dε.

Homomorphic encryption is useful in instances where one party has some private
data that must be somehow manipulated by a second party, without direct access to
the data itself.

Think, for example, of a situation in which you wish to bake a batch of gingersnaps
using your great-great-great-grandmother’s secret recipe. You happen to be extremely
lazy, so you do not want to bake the cookies on your own, but you cannot reveal the
secret ingredients to anyone else. You lure a friend to your house with the promise
of freshly baked goods, but instead of feeding them, you lay out all of your baking
supplies and ingredients and turn off the lights. You put on your special night vision
goggles and guide your friend through the darkness to mix the dough, mold it into
circular shapes, and bake the cookies.

Even though you’re the one giving the directions, you aren’t the one who is actually
making the cookies. Your friend is the one doing the work and has no idea how to
recreate your recipe without your help, even though the cookies are delectable enough

1



2 ISABELLE HONG

to justify many more batches. They have no idea what your secret ingredient is because
the kitchen was too dark for them to have seen anything.

Much like homomorphic encryption, the results of performing operations on the
encrypted data, or the ingredients in the dark, are the same as if you had just baked
your own gingersnaps. Such a system may be useful in the medical field, where medical
information must be kept private, and in finance, where a corporation may need to
protect its data [ABC+15].

In this paper, we will explore various fully homomorphic encryption schemes and
explain their possible limitations.

2. Somewhat Homomorphic Encryption Schemes

If a cryptosystem is somewhat homomorphic, then it has a homomorphic property.
Many familiar cryptosystems are somewhat homomorphic.

For instance, RSA is homomorphic with respect to multiplication because the process
of encryption encrypts the product of the plaintexts. For the ciphertexts c(m1) = me

1

(mod n) and c(m2) = me
2 (mod n), it is true that

c(m1) · c(m2) = me
1 ·me

2 (mod n)

= (m1m2)
e (mod n)

= c(m1 ·m2).

From this example, we can see that the product of the encrypted messages is equal
to the encrypted product of the messages.

Similarly, the ElGamal encryption scheme, which is based on the Diffie-Helman key
exchange, is also multiplicatively homomorphic. For a prime p, a generator g ∈ F×

p ,

ciphertexts c(m1) = (gb1 ,m1 · ga1b1) (mod p) and c(m2) = (gb2 ,m2 · ga2b2) (mod p),
where a and b are between 0 and p− 2,

c(m1) · c(m2) = (gb1 ,m1 · ga1b1) · (gb2 ,m2 · ga2b2)
= (gb1 · gb2 ,m1 · ga1b1 ·m2 · ga2b2)
= (gb1b2 ,m1m2 · ga1b1+a2b2)
= c(m1 ·m2).

These earlier encryption schemes formed the basis for the development of fully ho-
momorphic encryption schemes.

3. Fully Homomorphic Encryption Schemes

Definition 3. If a scheme is fully homomorphic, then it must be homomorphic for all
circuits.



HOMOMORPHIC ENCRYPTION 3

3.1. Gentry’s Scheme Based on Ideal Lattices.
Gentry’s scheme ([Gen09a], [Gen09b]), the first fully homomorphic cryptosystem, uses
ideal lattices, rather than exponents, because the process of decryption is less com-
plex. In addition, ideal lattices already have operations of addition and multiplication
because of their ring structure. (A ring is an abelian group under addition with the
properties of multiplicative associativity and distributivity.) Gentry constructed his
system by starting with a bootstrappable scheme, then manipulating this property to
obtain a fully homomorphic system.

The construction of his scheme is best left to Gentry himself; however, a few impor-
tant ideas introduced by his construction have been tantamount to the development of
other fully homomorphic systems, many of which also involve lattices and bootstrap-
ping.

Definition 4 ([Gen09b]). Let Cε be a set of circuits, where ε is homomorphic to the
circuits of Cε. We can define ε as bootstrappable with respect to a set of gates with
plaintext inputs and outputs Γ if

Dε(Γ) ⊆ Cε,

where Dε(Γ) is a g-augmented decryption circuit in which Dε inputs a secret key and
ciphertext and a g-gate, g ∈ Γ connects copies of Dε.

Theorem 5 ([Gen09b]). If ε is bootstrappable with respect to Γ, then the family of
schemes ε(d) is leveled fully homomorphic.

The bootstrappable property enables a scheme to transform from somewhat ho-
momorphic to fully homomorphic, which is extremely useful in constructing schemes.
Bootstrapping reduces the noise produced by encryption, and this property is necessary
because decryption becomes impossible when there is too much noise.

However, somewhat homomorphic schemes are not bootstrappable by default when
decryption involves the step of generating n+ 1 vectors from n vectors. Gentry intro-
duces the process of ”squashing the decryption circuit,” which limits the parameters
of the Decrypt function to make the scheme bootstrappable without altering the set of
circuits.

3.2. The BGV Scheme.
A newer fully homomorphic cryptosystem is the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme ([BGV11]), which does not rely on bootstrapping and instead depends
on the ring learning with errors (RLWE) problem. The authors define a general learn-
ing with errors (GLWE) problem to include both learning with errors and its variant,
ring learning with errors.

Definition 6 ([BGV11]). Let n = n(λ) be an integer dimension, f(x) = xd + 1
where d = d(λ), q = q(λ) ≥ 2 be a prime integer, R = Z [x] /(f(x))), Rq = R/qR, and
χ = χ(λ) be a distribution over R for a security parameter λ. The GLWEn,f,q,χ problem
is to differentiate between a distribution in which (ai, bi) is sampled uniformly from
Rn+1
q and another distribution where s ← Rn

q is drawn uniformly and (ai, bi) ∈ Rn+1
q

is sampled by sampling ai ← Rn
q uniformly, ei ← χ, and bi is set equal to 〈ai, s〉 + ei.

This problem is assumed to be impossible.



4 ISABELLE HONG

The general learning with errors problem is critical for encryption in the BGV
scheme, which is unfeasible to explain completely in this paper.

Additionally, the BGV scheme relies on its Refresh function: this algorithm expands
an encrypted ciphertext and changes the moduli and keys. Like bootstrapping, the
Refresh function decreases the noise produced by encryption. However, the steps of
the Refresh function make the scheme more efficient, in terms of computation time,
because noise can be reduced more simply.

4. Limitations

Fully homomorphic encryption does not account for multiple users. Because each
user would need a separate public key to protect their data from a provider, it is
difficult to extend FHE to apply to a system with many users.

FHE schemes also have large runtimes because they require so much computation.
Although these schemes run in polynomial time, they are not yet efficient enough to
have practical applications. It also does not allow for algorithms to be kept private be-
cause fully homomorphic encryption does not enable function encryption. This which
could be an issue in some contexts, especially those concerning data of some corpora-
tions. See [ABC+15] for more details.

Although fully homomorphic encryption may not yet be completely applicable to
the real world, it is important to remember that the first major breakthroughs in this
area of cryptography only occurred ten years ago, with Gentry’s scheme. In the past
decade, many more techniques and schemes have been developed, so it is probable that
many more achievements are to come.

References

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, An-
gela Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully ho-
momorphic encryption. IACR Cryptology ePrint Archive, 2015:1192, 2015.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homo-
morphic Encryption without Bootstrapping. 2011.

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme. 2009.
[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,

2009.


	1. Introduction
	2. Somewhat Homomorphic Encryption Schemes
	3. Fully Homomorphic Encryption Schemes
	3.1. Gentry's Scheme Based on Ideal Lattices
	3.2. The BGV Scheme

	4. Limitations
	References

