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Abstract. This article discusses the Learning with Errors and the Ring Learning with
Errors problem and their cryptographic applications in a gentle fashion.

1. Introduction

Most of current cryptosystems in use today are based on either the discrete logarithm
problem, the factoring problem, or the elliptic curve discrete logarithm problem. However,
in 1999, Shor [Sho99] showed that these problems can be solved quickly using a quantum
computer. Although current quantum computers are relatively far from becoming a serious
threat, a lot of current cryptographic research focuses on developing quantum resistant
cryptography, or algorithms that are believed to be secure against attacks from quantum
computers.

One such area of research is in problems related to lattices. For a more in-depth treate-
ment of lattice-based cryptography, see [Pei16]. We will focus on the Learning with Errors
(LWE) problem, as well as the related Ring Learning with Errors (RLWE) problem. It was
introduced by Regev [Reg10] in 2005, RLWE was introduced by Lyubashevsky, Peikert, and
Regev [LPR13] in 2013. Regev recieved the 2018 Gödel prize for his work in 2005.

NIST has a project focusing on the standardization of post-quantum cryptography. Many
of the algorithms within their competition are based on lattices, LWE, and RLWE. One
such example is from Alkim et al. [ADPS16], who have submitted their algorithm based
on RLWE, NewHope, to the project and have made it to the second round along with 25
other candidates. Google previously tested CECPQ1, a cipher based on RLWE, to make
web browsers secure to quantum computers.

The rest of this article is structured as follows. Section 2 will give some definitions and
a gentle introduction to the problem. Section 3 will serve to provide a formal definition for
LWE and provide some results about the problem. Sections 4 and 6 describe variants of
Learning with Errors, and sections 5 and 7 describe cryptographic applications for LWE.

2. Definitions and Overview

Let Z be the ring of integers and let Z/qZ denote the integers modulo q. Let a, s ∈ (Z/qZ)n

be vectors, and let 〈a, s〉 =
∑n

i=1 aisi be the standard inner product or dot product of two
vectors. Let poly(n) mean “some polynomial in n.”

We first give an extremely easy variant of the Learning with Errors problem, the Learning
without Errors problem. Imagine two characters, Jeb and Eliza, where Eliza has locked Jeb
in a room and he is only given access to a button. This button has some known information
about it, namely that it has a dimension n ∈ N and a modulus q ∈ N. However, it also
contains a secret vector s ∈ (Z/qZ)n. Upon pressing this button, Jeb receives a random
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vector a ∈ (Z/qZ)n along with the inner product modulo q, 〈a, s〉 ∈ Z/qZ. Jeb can hit this
button as many times as he wants, and his goal is to quickly figure out what the secret s is,
preferably in a time that is polynomial in n. If he figures out this secret, then Eliza will let
him out of the room.

After writing down what the button gives him, Jeb realizes that this is a system of linear
equations, modulo q. Since Jeb is smart and remembers from Algebra 2 that he can solve a
system of linear equations using Gaussian Elimination, he can always find the secret vector
s in polynomial time once he is given n independent vectors.

Example. Imagine that n = 2 and q = 5. Jeb pushes the button three times and gets the
equations

2s1 + s2 ≡ 2 (mod 5)

s1 + 3s2 ≡ 1 (mod 5)

2s1 + 3s2 ≡ 3 (mod 5).

The first and second equations are dependent. Using Gaussian Elimination, Jeb realizes that
s = (2, 3).

Now, Jeb has solved the Learning without Errors problem and escaped the room! Unfor-
tunately, Eliza is extremely evil and he is unfortunately trapped in a different room with
another, more menacing button. This button represents the Learning with Errors problem.
Along with the dimension n and the modulus q, the button is also known to have an er-
ror parameter B ∈ Z/qZ. When Jeb pushes the button, he is presented a random vector
a ∈ (Z/qZ)n and the inner product plus some error term 〈a, s〉+ e ∈ Z/qZ, where, for now,
we can think of e being randomly chosen in the interval [−B,B].

Now, instead of being given linear equations, Jeb is essentially only given some noisy
approximate linear equations, where Jeb does not know how much it errs. His Gaussian
Elimination algorithm does not work, and Jeb cannot think of any algorithms to solve the
problem, so he is stuck in the room forever and Eliza is happy.

Example. Imagine that n = 2, q = 5, and B = 1. One possible scenario is that Jeb pushes
the button many times and gets the equations

2s1 + s2 ≈ 1 (mod 5)

s1 + 3s2 ≈ 1 (mod 5)

2s1 + 3s2 ≈ 3 (mod 5)

4s1 + 2s2 ≈ 4 (mod 5)

3s1 + 4s2 ≈ 4 (mod 5)

...

2s1 + s2 ≈ 2 (mod 5).

Jeb, being bored and hopeless, sits in the room and just continuously presses the button.
Eventually, he is presented with a vector a that is of the form (1, 0, 0, . . .). He realizes that
the inner product 〈a, s〉+ e = s1 + e told him an approximate value of s1. Excited, Jeb uses
his expert skill at pressing buttons and presses the button extremely quickly. He is able to
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eventually produce many vectors of the form (1, 0, 0, . . .). Given enough of these, Jeb can
guess with relatively high probability what s1 is. Jeb repeats the process for the whole vector
s, and is let out of the room by Eliza.

Of course, in reality, Jeb’s algorithm would take an enormously long amount of time for
large values of n. After escaping the room, Jeb is extremely excited to learn more about this
problem, so he reads the rest of this paper.

3. Learning with Errors

We now formally define the LWE problem.
We set a couple of parameters. n is called the degree, or the security parameter. q is the

modulus. Instead of an interval of error, we set the probability distribution χ on Z/qZ to
be the error distribution. Let As,χ ∈ Z/qZn×Z/qZ be the probability distribution obtained
by choosing a vector a ∈ Z/qZn uniformly at random and e ∈ Z/qZ chosen according to
χ, and outputting (a, 〈a, s〉 + e). An algorithm is said to solve LWE with modulus q and
error distribution χ if, for any vector s ∈ Z/qZn, given an arbitrary amount of independent
samples from As,χ, it outputs s with large probability.

This is called the search variant of the LWE problem, as the goal is to find such the secret
s. There is also a decision variant, which is to distinguish the LWE samples from uniformly
random samples.

3.1. Parameters. Generally, we let q be polynomial in n. We take the error distribution
χ to be the discrete Gaussian distribution with standard deviation αq, where α > 0 is
1/ poly(n). One can think of this as the Gaussian distribution with standard deviation
αq, taking values modulo q and rounding every point to the nearest integer. It turns out
that the hardness of this problem is mainly dependent on n. Taking large q does make it
the problem slightly more difficult, but it has the disadvantage of making cryptographic
algorithms inefficient since it requires computation with large numbers.

Of course, there are certain parameters that would be bad choices for our problem. For
example, choosing χ to be the uniformly random distribution across all values of Z/qZ will
lead to no one ever being able to find the secret. Furthermore, we need q >

√
n and the error

cannot be always smaller than
√
n due to a security vulnerability from Arora and Ge [AG11],

which we will discuss shortly. We let the reader research the topic further for more informed
choices of parameters.

3.2. Attacks. The easiest algorithm, the one that our character Jeb used, where he tries to
find vectors of the form a = (. . . , 0, 1, 0, . . .) has a complexity of 2O(n logn). This is because
finding such a polynomial is expected to take q−n, and we need slightly more equations to
determine s.

Improving this slightly, Blum, Kalai, and Wasserman [BKW03] had an algorithm to solve
LWE in 2O(n). The reader can view their article for more information on their algorithm.

Arora and Ge [AG11] created an attack for when the error is small. In fact, this is the
vulnerability mentioned above for why the restrictions on the error and modulus exist. Again,
the reader is referred to their paper for the full details of their algorithm, which is slightly
sub-exponential. We give a brief example to give insight as to the general argument of the
algorithm. Imagine that the error was uniformly chosen from the set {−1, 0, 1}. Then, if
As,χ outputs tuples (a, b), we know that

(b− (〈a, s〉 − 1))(b− (〈a, s〉))(b− (〈a, s〉+ 1)) = 0.
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Expanding this gives us a degree three polynomial in terms of si, such as∑
i,j,k

αi,j,ksisjsk +
∑
i,j

βi,jsisj +
∑
i

γi,j,ksi + δ = 0,

for some known and easy-to-compute coefficients α, β, γ, δ. We can relabel the products of
si with other variables, and this equation becomes linear. Given enough of these, we can
solve the equation using Gaussian Elimination.

3.3. Hardness. The current fastest known algorithm to solve the LWE problem is expo-
nential. Furthermore, LWE is known to be as least as hard as certain problems regarding
lattices. In particular, it relies on the worst-case hardness of lattice problems, contrasting
algorithms that rely on factoring, for example. If factoring was found to be easy in the
average case, then cryptographic schemes relying on factoring would be broken. One can
see [Reg09] for more information.

4. Decisional Learning with Errors

To discuss the Decisional Learning with Errors problem, we refer back to our characters
Eliza and Jeb. Again, Eliza has trapped Jeb in one of two possible identical rooms, each
with a button inside. The only difference between the rooms is that the button in one room
outputs (a, u), where u ∈ Z/qZ is chosen randomly. The other button is the exact same
button as the one mentioned earlier. Now, Jeb’s goal is to, with high probability, tell Eliza
which room he is in. Again, this is hard, and it turns out to be equivalent to the search
variant.

Formally, an algorithm solves decisional LWE if, with high probability, can distinguish
between whether it has access to As,χ or randomly chosen outputs. In the following proofs,
let n ≥ 1, 2 ≤ q ≤ poly(n), and s be the secret vector.

Lemma 4.1 (Search to Decision). Given a procedure that solves search LWE in polynomial
time, there exists a polynomial time algorithm that solves decision LWE.

Proof. Our procedure to solve decision LWE is as follows. Take enough samples from our
distribution to feed into our procedure for search LWE. The procedure outputs some guess
for the secret s. Now, it is easy to verify whether it is the correct secret, by asking for more
samples and checking whether the error follows the distribution χ. If it does, then we have
access to the As,χ distribution. If it looks uniformly random, then we have access to the
other. �

The other direction is slightly more difficult than the first.

Lemma 4.2 (Decision to Search). Given a procedure that solves decision LWE in polynomial
time, there exists a polynomial time algorithm that solves search LWE.

Proof. We show ow a procedure can find the value of s1 in poly(n) time. Let k ∈ Z/qZ be
our guess for s1. We repeat the following with all values of k. Given enough samples from
our distribution As,χ, for each (a, b), we feed our procedure that solves decision LWE the
tuple (a + (r, 0, . . . , 0), b+ r · k), where r ∈ Z/qZ is chosen uniformly at random.

Clearly, if we guessed correctly and k = s1, then our tuples are exactly in the distribution
As,χ. Otherwise, if we guessed incorrectly, then as long as q is prime, the tuples we output
look like the random distribution. �
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5. Encryption

We give a simple cryptosystem as a proof of concept here. We parameterize it as follows.
We have the integers n, m, q, and a real α > 0, where m is the number of samples, and the
rest of the variables are as defined as the statement of LWE. We do have to be careful with
our choices of parameters to ensure correctness. One such choice is q to be prime between
n2 and 2n2, m = 1.1 · n log q, and α = 1/(

√
n log2 n).

Our private key is the secret vector s. Our public key consists of m samples (ai, bi)from
the LWE distribution.

For encryption, we do the following to encrypt a message M with bits M1,M2, . . .. Choose
a random subset S of [m]. The encryption is (

∑
i∈S ai,

∑
i∈S bi + b q

2
cMi).

To decrypt a pair (a, b), we choose based on whether b− 〈a, s〉 is closer to 0 than to b q
2
c.

Note that the public key is of size n2, which is impractical when n is large.
To see that this cryptosystem is correct, one just has to make sure that the sum of error

terms is not larger than q/4 (otherwise we would decrypt incorrectly). It turns out, with
basic statistics, that the parameters we chose lead to this happening with extremely small
probability.

6. Ring Learning with Errors

One impracticality with using learning with errors for cryptography is the fact that one
needs n vectors, each of length n, leading to O(n2) elements in a key. The idea behind
RLWE is to use one vector of length n to generate all other vectors, leaving a key size of a
substantially smaller O(n) elements.

Here is the formal statement of the RLWE problem, taken from [Reg10]. Let n be a power
of two, and let q be a prime satisfying q ≡ 1 (mod 2n). Define Rq as the quotient ring of
polynomials Zq[x]/〈xn + 1〉. We are given samples of the form (a,b = a · s + e) ∈ Rq × Rq

where s ∈ Rq is a fixed secret, a ∈ Rq is chosen uniformly, and e is an error term chosen
independently from some error distribution over Rq. The error distribution is typically so
every coefficient of the polynomial is independently and identically distributed (a normal
distribution in higher dimension).

Lyubashevsky, Peikert, and Regev [LPR13] proved that the RLWE problem has the same
hardness as the LWE problem. The reader can read more about RLWE in the given refer-
ences.

The cryptosystems being proposed that are based on LWE are actually based on RLWE
because of the necessary efficiency that it brings.

The applications for LWE in cryptography is extremely broad. One area that is partic-
ularly interesting is that it is possible to do fully homomorphic encryption with RLWE,
see [BV11]. There are also algorithms for digital signatures that are based on RLWE.

7. Ring Learning with Errors Key Exchange

Ding, Xie, and Lin [DXL] have developed a simple key exchange relying on both LWE and
RLWE. We give a sketch of their RLWE key exchange algorithm here.

Alice chooses a secret sA and a public m ∈ Rq. She computes pA = msA + 2eA (mod q),
where eA is chosen according to the error distribution. She sends pA and m.

Bob chooses a secret sB. Bob then computes KB = pA · sB + 2e′B (mod q) and pB =
m · sB + 2eB (mod q) where eB, e

′
B are chosen according to the error distribution. Finally,
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Bob sends pB and a signal (which is defined precisely in their paper, we will take it as a sort
of “hint” σ of the value KB) to Alice. He obtains the shared key using a “robust extractor”
(also defined in their paper), which extracts a value E(KB, σ) from the computed value KB

and the hint σ. The goal of this extractor is such that if x, y are close, then the values
E(x, σ) and E(y, σ) are the same.

Alice computes KA = sApB + 2e′A (mod q) with some error e′A and obtains the shared key
E(KA, σ).

Since KA and KB differ in terms of the error terms, they are close with extremely high
probability and thus the shared keys are the same with high probability.
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