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Abstract. In this paper, we discuss the existence of positive integer solutions to N =
a

b+c + b
a+c + c

a+b and consider a method for finding integer solutions, when feasible. Much

of the material comes from Brenmer and MacLeod’s paper [1], but the N = 6 example and
the computational complexity analysis are my original contributions.

1. Introduction

Diophantine equations are multivariate polynomial equations that are to be solved over
the integers. Certain Diophantine equations can be solved with the use of substitutions to
transform the equation into an elliptic curve of the form y2 = x3 +ax+ b, no longer over the
integers, but rather the rationals. This often allows us to use special properties of the elliptic
curve to form a general solution to the original equation. In this paper, we will discuss how
integer solutions to N = a

b+c
+ b

a+c
+ c

a+b
are related to the order of points on an elliptic

curve. Furthermore, we will outline a method for finding solutions and discover that despite
the apparent simplicity of the equation, minimal solutions can be extremely large, if they
exist at all. Lastly, we will determine the feasibility of finding such solutions as the value of
N grows larger.

Equation 1.1. The equation we will discuss in this paper is N = a
b+c

+ b
a+c

+ c
a+b

, where N
is a positive integer.

2. Finding Solutions

We will assume from now on that N > 2, because N = 1 has no solution (easily proven
using AM-GM inequality) and the only solutions to N = 2 are multiples and/or permutations
of the trivial solution (a, b, c) = (1, 1, 3). Multiplying out the denominators, we see that the
above equation can be converted to the third-degree Diophantine equation

N(a + b)(b + c)(c + a) = a(a + b)(c + a) + b(b + c)(a + b) + c(c + a)(b + c).

Applying the substitutions

x =
−4(a + b + 2c)(N + 3)

(2a + 2b− c) + (a + b)N
, y =

4(a− b)(N + 3)(2N + 5)

(2a + 2b− c) + (a + b)N

transforms this equation into the elliptic curve

E : y2 = x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x.

The corresponding inverse transformations are

a

a + b + c
=

8(N + 3) − x + y

2(4 − x)(N + 3)
,

b

a + b + c
=

8(N + 3) − x− y

2(4 − x)(N + 3)
,

c

a + b + c
=

−4(N + 3) − (N + 2)x

(4 − x)(N + 3)
.

1
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These transformations are in arbitrary order; since Equation 1.1 is symmetric, any permu-
tation of a, b, c will also be a valid solution. Since N is positive, zero denominators are only
of concern when x = 4. We will see later on that this is not a problem.

Definition 2.1. A projective space is a space where each point corresponds to the line
passing through that point and the origin in the Euclidean space one dimension higher.

Definition 2.2. A projective plane is a two-dimensional projective space.

Note that points (x, y) are on the projective plane, so if (a, b, c) is a solution, then (ta, tb, tc)
is also a solution for any constant t. The inverse transformation formulas above only guar-
antee that the values of a, b, and c are rational, not integer, so we must multiply them by
the least common multiple of the denominators of the three fractions to get integer values.

Definition 2.3. The order of an element a of a group is the smallest positive integer m
such that m ∗ a = e, where e is the identity element of the group. Over the group of rational
points on an elliptic curve, denoted E(Q), the identity is the point at infinity. If no finite m
exists, then a is defined to have infinite order.

Definition 2.4. The torsion subgroup of an elliptic curve E over the rationals is the
subgroup of points on E that have finite order with respect to the group law of addition over
an elliptic curve.

Definition 2.5. (The Point Duplication Formula) If P = (x, y), then the x-coordinate of
2P is

x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
.

From this, it is easy to find the y-coordinate.

Theorem 2.6. The torsion subgroup of this elliptic curve is isomorphic to Z/6Z for all
N > 2.

Proof. We refer to [BM14].

Lemma 2.7. When N > 2, the curve has exactly one point of order 2.

Proof. We note that rational points T2 = (x, y) of order 2 must satisfy y = 0. In order for
there to be three distinct rational points of order 2, the equation x3 + (4N2 + 12N − 3)x2 +
32(N + 3)x must have three rational roots. Since (0, 0) is a point on the curve, the equation
must be divisible by x, which we divide out to get

x2 + (4N2 + 12N − 3)x + 32(N + 3).

In order for a quadratic to have two rational solutions, its discriminant must be a perfect
square. This quadratic has discriminant (2N − 3)(2N + 5)3 = (2N + 5)2(2N + 5)(2N − 3),
so (2N − 3)(2N + 5) = (2N + 1)2− 16 must be a perfect square for there to be more rational
points of order 2. The only integer solution is N = 2. (When N > 2, the difference between
perfect squares is too large for (2N + 1)2 − 16 to be a square). Therefore, when N > 2, the
curve has only one point of order 2, which is (0, 0). �

Lemma 2.8. The curve has exactly two rational points of order 3, which are the inflection
points.
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The proof of this is an exercise that the reader has likely already completed. It is given
in Chapter 14 of Simon’s cryptography book. [RS02]

Because we have points of order 3 and points of order 2, there must exist points T6 = (x,
y) of order 6. To find them, we substitute the coordinates of T3 into the point duplication
formula to get

T6 = (8(N + 3),±8(N + 3)(2N + 5)).

Lemma 2.9. There exists no point of order 12.

Proof. Plugging in the coordinates of T6 into the point duplication formula reveals that a
point T12 could only exist if the elliptic curve is degenerate, meaning that it has a double or
triple root x0 and a singularity at the point (x0, 0). The full proof of this lemma is given in
Brenmer and MacLeod’s paper [BM14] �

Given that there exists exactly one point of order 2 and two points of order 3, and no points
of order 12, we can conclude that the torsion subgroup of this elliptic curve is isomorphic to
Z/6Z. �

Although each rational point on the elliptic curve corresponds to a solution to the original
Diophantine equation, torsion points either give degenerate solutions or no solutions at all
(for example, when x = 4, it’s not possible to obtain values for a, b, and c because doing
so would involve dividing by zero). Therefore, we need points of infinite order for a general
solution, and furthermore, the elliptic curve must be of nonzero rank. Given a generator
point G, we calculate successive multiples of G until we find one that corresponds to a
positive solution to Equation 1.1.

Example. Let’s look at solutions to the case of N = 6. We plug N = 6 into the substitutions
given in section 2, which gives

x =
−36(a + b + 2c)

(2a + 2b− c) + 6(a + b)
, y =

612(a− b)

(2a + 2b− c) + 6(a + b)

The elliptic curve is then y2 = x3 + 213x2 + 288x, with inverse transformations

a

a + b + c
=

72 − x + y

18(4 − x)
,

b

a + b + c
=

72 − x− y

18(4 − x)
,

c

a + b + c
=

−36 − 8x

9(4 − x)
.

Since these solutions are projective, we simply multiply through by the least common mul-
tiple of the three denominators to find integer solutions when converting back.

I ran a simple Sage program to find a generator point, which returned P = (−200, 680).
This corresponds to

a

a + b + c
=

7

27
,

b

a + b + c
=

−1

9
,

c

a + b + c
=

23

27
.

Multiplying by 27, we have the integer solution

a = 7, b = −3, c = 23.

(any of its cyclic permutations and/or multiples will also be solutions). However, it’s not a
positive solution, so it’s not what we want. Trying this with 2P , 3P , and so on, all result in
nonpositive solutions, until 11P , which is the first positive solution, with
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a

a+ b+ c
=

215414330946641634663592904941241100211134475343849362786299984417416712566876348555729759

252293331861833974396510709460981810732044727718237019542687868084044627837476513331988649
,

b

a+ b+ c
=

21744417105088710629569121302615772844763109829205302711389610511791869194394738676815527

229293625229342931710511839470903786090694483697213218342637216062558603889893949465017307
,

c

a+ b+ c
=

4497836684187902457419534185672218724065611288993498002492319265501461434113932335764023

87603869613159459094313079719335401261389590802002049528304459188423426554259129546592027
.

Multiplying by the least common multiple of the denominators gives the minimal solution
a = 202608698598832223799315202983263907001529883322145257113235001321799432877000056012102887
97153868533207131302477269470450828233936557,
b = 225032402201268386688642646194249481114120008492122321846196737758856447761622076778963225
7358521952443049813799712386367623925971447,
c = 121834324270290585579226423786880322307309029831012129752675283055832384550391007185199921
7959704024280699759290559009162035102974023.

3. Nonexistence of solutions for odd N

Theorem 3.1. When N is odd, the equation has no solutions.

The proof is beyond the scope of this paper, as it is rather long and involves much casework.
You can view it in Brenmer and MacLeod’s paper. [BM14]

4. Sizes of minimal solutions

Brenmer and MacLeod’s paper [BM14] contains a table of minimal solution sizes, for the
range 4 ≤ N ≤ 200 where a solution size is defined as the maximum number of digits in the
numbers a, b, and c. It also shows the corresponding values of m, where m is the smallest
integer such that the point m ∗ P corresponds to a positive integer solution.

Let’s look at a couple of examples, which will be relevant in the next section:
When N = 178, the smallest positive integer solution is at m = 2945, with a solution size of
398605460 digits. When N = 896, the smallest positive integer solution is at m = 161477,
with a solution size in the trillions of digits.

5. Computational Complexity Analysis of Searching for Solutions

We will discuss the time complexity of calculating solutions to (1.1), and determine when
it is computationally feasible to do so.

Let’s first start by introducing Hilbert’s 10th problem, which asks whether there exists
an algorithm for determining the solvability of general Diophantine equations. The problem
was solved in 1970; it was proven that no such general algorithm exists. [Dav73]

Theorem 5.1. There is no computable upper bound for the minimal solutions to (1.1)

Proof. This is a simple corollary of Hilbert’s 10th problem; we proceed using proof by con-
tradiction. Let’s assume that there is a computable upper bound. Then, there exists an
algorithm for finding solutions: Test all possible positive integer values of a, b, and c below
the upper bound. This is a contradiction, because Hilbert’s 10th problem being proved un-
solvable implies that there exists no general algorithm for solving Diophantine equations. �
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First, let’s look at the complexity of operations on integers and rational numbers. For
two n-digit integers, addition and subtraction can be done in O(n), and multiplication and
division in O(n log n). Finding the GCD can be done in O(log n) by the Euclidean algorithm.
When we are working with rational numbers with n-digit numerators and denominators, all
four operations are O(n log n) because the cost of these operations is dominated by multi-
plication.

Next, we will examine the elliptic curve operations. Let n be the number of digits in the
coordinates of each point. Point addition requires only a constant number of multiplications,
so its complexity is O(n log n). Point multiplication by a number k can be done in O(log k)
additions by repeated doubling (similar to repeated squaring in fast exponentiation), so its
complexity is O(n log n log k).

Finally, we would like to know how many multiples of G are required to find a point
corresponding to positive solutions. In order for it to correspond to a positive solution, a
point must lie on one of two sections on the bounded section of the elliptic curve. Since
rational points are dense on both components of the elliptic curve [Hur17], we can assume
that the points m ∗P generated by P are equally distributed about the bounded part of the
elliptic curve. Moreover, using arc length estimates, the probability that any m ∗ P lies on
one of these sections is O(1/N). [BM14] It follows that the minimum value of m required to
find the smallest positive solution is O(N).

Now that we’ve introduced the necessary background, let’s outline the steps of the algo-
rithm and the complexity of each. We define d to be the maximum number of digits in a, b,
and c.

1. Transform the equation into an elliptic curve, using the substitutions given earlier in
section 2. This can be done in a constant number of arithmetic operations using the number
N, so this is done in O(N logN).

2. Find a generator point on the elliptic curve. The computational complexity of this
depends on its height, which can be expressed in terms of the Gross-Zagier Formula. [Han11]
However, in addition to being well beyond the scope of this paper, it’s also not helpful for
defining the time complexity in terms we can express. Furthermore, since d is the logarithm
of the uncomputable upper bound and thus grows extremely fast, we’ll assume that the
complexity of finding a generator is not greater than the complexity of arithmetic operations
on d-digit rationals.

3. Calculate successive multiples of G until one corresponds to a positive solution to
the original equation. Let m be the smallest positive integer such that m ∗ G corresponds
to a valid solution. We know that m is probabilistically O(N). Let d be the maximum
number of digits among a, b, and c in such a solution. For each multiple of G, we perform
a constant number of arithmetic operations on rationals of maximum size d, so this is done
in O(m ∗ (d log d)) = O(N ∗ (d log d)).

Due to the rapid growth of d as N increases, the N ∗ (d log d) term dominates all others.
Hence, the time complexity of the entire algorithm is O(N ∗ (d log d)).

Summit, the fastest supercomputer in the world as of 2019, can handle 2 ∗ 1015 operations
per second. For the case of N = 178, d is 3.5 ∗ 108, so this algorithm requires a constant
multiple of N ∗ d log d = 1.8 ∗ 1012. Due to the rapid growth of d, we see that this algorithm
quickly becomes infeasible in the general case when N exceeds 200. As a result, we see that
despite the existence of an algorithm for finding solutions, the size of the numbers involved
renders the equation N = a

b+c
+ b

a+c
+ c

a+b
practically unsolvable for large values of N .
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