
AN INTRODUCTION TO CONTINUED FRACTION
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Abstract. This paper gives a brief introduction for calculating continued fraction for both the
finite and infinite cases through the use of several theorems. It also gives future steps which should
involve the calculation of Mobius transformations, which are more detailed expansion of fractions,
and represent positive integers Index Terms. finite continued fraction, infinite continued fraction,

1. Introduction

A finite continued fraction is given an expression
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q
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e1

a1 +
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e3

. . .
en
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If an algebra student attempts solving the quadratic equation

x2 − 3x− 1 = 0

As follows: he starts by diving all through by x, and then writes the equation in the following
form:

x = 3 +
1

x
The element x is still in the equation and can hence be replaced by the equation equivalent to it,
which is

x = 3 +
1

x
= 3 +

1

3 + 1
x

This result in an equation as follows
This replacement of x can be repeated by

3 + 1/x

Several times in order to obtain the expression that follows
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An expression of the form
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is called a continued fraction. In general, the numbers all a1,a2, a3, . . . ,b1, b2, b3, . . . may be any
real or complex numbers, and the number of terms may be finite or infinite

For finite continued fractions, they are in the form

a1 +
1

a2 +
1

a3 +
1

a4 +
.. . +

1

an−1 +
1

an

If the expression only has finite number of terms a1, ·a2, a3, . . . , an
In this case, the lower + signs shows that the step-down process forms a continued fraction. A

continued fraction can also be conveniently denoted by

[a1, a2, · · · , an]

In this case, the terms a1, a2, · · · , an
Are known as partial quotients of the continued fraction

1.1. Expansion of the Rational Fractions. A rational number is any given fraction in the form
p/q in which p and q are integers and q 6= 0

It is possible to prove that every rational fraction, or any rational number, can be expressed as
a simple continued fraction For instance, given the fraction 67/29, its continued fraction can be
expanded to give

67

29
= 2 +

1

3 +
1

4 +
1

2
or

67

29
= [2, 3, 4, 2]

The result is obtained by first dividing 67 by 29, which gives the quotient 2 and the remainder as
9, so that

67

29
= 2 +

9

29
= 2 +

1
29
9

Since on the right side, we have replaced 9/29 by its reciprocal 29/9, the next step involves diving
29 by 9 in order to obtain

29

9
= 3 +

2

9
= 3 +

1
9
2

The final step involves diving 9 by 2 in order to obtain

9

2
= 4 +

1

2

This marks the end of the process. When this is substituted in the original expression, we obtain
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= 2 +

1
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9
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1
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9
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1
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1
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Or
67

29
= [2, 3, 4, 2] = [a1, a2, a3, a4]
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2. Theorems of Continued fractions

Theorem 2.1. Every rational number p/q determines a unique finite regular continued fraction.

Proof. Given p/q, Euclid’s algorithm determines [a0, a1, a2, . . . an].Note that for t = [0, a1, a2, . . . an]
holds: 0 ≤ t < 1 (with a strict inequality on the right because an> 1), and thus a0 ≤ [a0, a1, a2, . . . an] <
a0+1. Now suppose that also p/q = [b0, b1, . . . bk] for another continued fraction. Then a0 = p/q = b0
since p/q is the unique integer satisfying p/q ≤ p/q < [p/q] + 1. �

Consider
1

[a1;a2,...,an]
= [0; a1, a2, . . . , an] = p

q − bp/qc = [0; b1, . . . bk] = 1
[b1;b2,...,bk]

then [a1; a2, . . . , an] =

[b1; b2, . . . , bk] so a1 = b1 as before; etc. then [a1; a2, . . . an] = [b1; b2, . . . bk] so a1 = b1
as before; etc. it is possible to consider the regular expansion of p/q without first finding the
Euclid’s algorithm as follows: determine the integral part of a0, after which, subtract it from the
given fraction, take the reciprocal of the given result, then repeat this means that xk+1 = 1

xk−bxkc
with x0 = p/q until xk − bxkc becomes 0. Put ak = bxkc

This results in the convergent as follows By definition p0/q0 = ba0; c = a0/1
Then

p1
q1

= a0 +
1

a1
=
a1a0 + 1

a1
and

p2
q2

= a0 +
1

a1 + 1
a2

= a0 +
a2

a2a1 + 1
=
a2a1a0 + a2 + a0

a2a1 + 1

Similarly,

p3
q3

=

(
a2 + 1

a3

)
a1a0 + a2 + 1

a3
+ a0(

a2 + 1
a3

)
a1 + 1

=
a3 (a2a1a0 + a2 + a0) + a1a0 + 1

a3 (a2a1 + 1) + a1

Theorem 2.2. The convergents pk/qk of a rational number p/q satisfy |pk| ≥ |pk−1| and qk ≥
qk−1 for k ≥ 1, and even:

|pk| > |pk−1| , (k ≥ 3), and qk > qk−1, (k ≥ 2)

while
pk−1qk − pkqk−1 = (−1)k

Proof.
pk−1qk − pkqk−1

qk−1qk
=
pk−1
qk−1

− pk
qk

=
pk−1
qk−1

− akpk−1 + pk−1
akqk−1 + qk−1

=
(−1) (pk−2qk−1 − pk−1qk−2)

qk−1 (akqk−1 + qk−2)
which by induction equals

(−1)k (p−1q0 − p0q−1)
qk−1 (akqk−1 + qk−2)

=
(−1)k

qk−1 (akqk−1 + qk−2)

�

Theorem 2.3. The convergents pk/qk of a rational number p/q satisfy for k≥0:

pk−1
qk−1

− pk
qk

=
(−1)k

qk−1qk

and
p0
q0
<
p2
q2
<
p4
q4
< · · · < p

q
=
pn
qn

< · · · < p3
q3
<
p1
q1
<
p−1
q−1
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also ∣∣∣∣pq − pk
qk

∣∣∣∣ < ∣∣∣∣pq − pk−1
qk−1

∣∣∣∣
for 0 ≤ k ≤ n.

Proof. There is a strict increase in the sequence qi, thus giving the difference between the two
consecutive convergents which decrease in the process. This therefore gives the proof for the second
part. The final statement is proved by denoting the following

apk−1 + pk−2
aqk−1 + qk−2

≤ bpk−1 + pk−2
bqk−1 + qk−2

⇐⇒

0 ≤ (a− b) (pk−2qk−1 − pk−1qk−2) = (a− b)(−1)k−1

k odd and b ≤ a, or k even and a ≤ b

For odd k < n it holds that
pk−1
qk−1

<
pk+1

qk+1
<
p

q
<
pk
qk

and applying the above with b = ak+1 ≥ 1 and a = 1 we get

p

q
>
pk+1

qk+1
=
ak+1pk + pk−1
ak+1qk + qk−1

≥ pk + pk−1
qk + qk−1

but then

p

q
− pk−1
qk−1

>
pk+1

qk+1
− pk−1
qk−1

≥ pk + pk−1
qk + qk−1

− pk−1
qk−1

=
− (pk−1qk − pkqk−1)
qk−1 (qk + qk+1)

=
1

qk−1 (qk + qk+1)
>

1

qk (qk + qk+1)
=
− (pk−1qk − pkqk−1)

qk (qk + qk+1)
=

=
pk
qk
− pk + pk−1
qk + qk−1

≥ pk
qk
− ak+1pk + pk−1
ak+1qk + qk−1

=
pk
qk
− pk+1

qk+1

>
pk
qk
− p

q

�

This is also similar with the even case

3. Infinite real continued fractions

Taking arbitrary real numbers x for continued fractions, we note that for x0 = x ∈ R We obtain

x0 = a0 +
1

x1

x1 = a1 +
1

x2

Theorem 3.1. The convergents pk/qk of any irrational number x satisfy:

1

2qkqk+1
<

1

qk (qk + qk+1)
<

∣∣∣∣x− pk
qk

∣∣∣∣ < 1

qkqk+1
<

1

q2k

for k ≥ 1.

Proof. ∣∣∣∣x− pk
qk

∣∣∣∣ =

∣∣∣∣xk+1pk + pk−1
xk+1qk + qk−1

− pk
qk

∣∣∣∣ =

∣∣∣∣ (−1)k

qk (qkxk+1 + qk−1)

∣∣∣∣
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since ak+1 < xk+1 < ak+1 + 1 is qk+1 < qkxk+1 + qk−1 < qk+1 + qk

1

qk (qk + qk+1)
<

∣∣∣∣x− pk
qk

∣∣∣∣ < 1

qkqk+1

The other inequalities follow from qk < qk+1 �

Theorem 3.2. Voor twee opeenvolgende convergenten pk−1/q)k − 1; pk/qk van een irrationaal getal
x geldt: ∣∣∣∣x− pk−1

qk−1

∣∣∣∣ < 1

2q2k−1
of

∣∣∣∣x− pk
qk

∣∣∣∣ < 1

2q2k

Proof. It would follow from ∣∣∣∣pkqk − pk−1
qk−1

∣∣∣∣ =

∣∣∣∣x− pk
qk

∣∣∣∣ +

∣∣∣∣x− pk−1
qk−1

∣∣∣∣
and the assumption that the statement is false, that

1

qk−1qk
=

∣∣∣∣pkqk − pk−1
qk−1

∣∣∣∣ ≥ 1

2q2k
+

1

2q2k−1

which is equivalent to

(qk − qk−1)2 ≤ 0

this is a contradiction as qk > qk−1 for k ≥ 2 �

Theorem 3.3. If a fraction p/q satisfies 0 < q ≤ qk for some convergent pk/qk of x then (Dajani
& Kraaikamp, 2002) ∣∣∣∣pq − pk

qk

∣∣∣∣ > 1

qk

but ∣∣∣∣x− pk
qk

∣∣∣∣ < 1

2qk
so ∣∣∣∣x− pk

qk

∣∣∣∣ < ∣∣∣∣x− p

q

∣∣∣∣
Suppose that qk−1 < q < qk ; let integers e , f be defined by

e = (qpk−1 − pqk−1) , f = (pqk − qpk)

then f 6= 0 and

epk + fpk−1 = p (pk−1qk − pkqk−1) = ±p
eqk + fqk−1 = q (pk−1qk − pkqk−1) = ±q

Theorem 3.4. If p/q satisfies ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2

then
p

q
=
pk
qk

for some convergent pk/qk of x (Austin, 2013)
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Proof. Expand p/q in a finite continued fraction of odd length n; then P/q = pn/qn and

pn
qn
− x =

δ

q2n
, δ <

1

2

There exists y ¿ 0 such that

x =
ypn + pn−1
yqn + qn−1

and then
δ

q2n
=
pn
qn
− x =

pnqn−1 − pn−1qn
qn (yqn + qn−1

=
(−1)n+1

qn (yqn + qn−1

)
so

δ =
qn

yqn + qn−1
implying

y =
1

δ
− qn−1

qn
> 1

�

Theorem 3.5. If

x =
py + r

qy + s
With y ∈ R and p, q, r, s ∈ Z such that y > 1, q > s > 0, ps − qr = ±1 (Allouche &

Jean-Paul, 2003)
Then there exists n ≥ 0 with

y = xn+1,
p

q
=
pn
qn
,

r

s
=
pn−1
qn−1

Where x = [a0; a1, . . .] , xi = [ai; ai+1, . . .] and pi/qi = [a0; a1, . . . , ai]
For i ≥ 0

Proof. Expand p/q in a continued fraction so that p/q = [A0;A1, . . . , An]
This is also equivalent to vn/wn, and let vn−1/wn−1 = [A0;A1, . . . , An−1]
In this way, the continued fraction has been chosen, so that (−1)n+1 = vnwn−1 − vn−1wn =

ps− qr = ±1
This then means that vnwn−1 − vn−1wn = vns− vnr
Hence vn (wn−1 − s) = wn (vn−1 − r)

�

4. Conclusion and future steps

This paper has given a method for calculating continued fraction for both the finite and infinite
cases through the use of several theorems. Future steps however should involve the calculation
of Mobius transformations, which are more detailed expansion of fractions, and represent positive
integers. Part of the application of these theorems is on the (Gear ratios). In this case, Christian
Huygens utilized proceeded with part convergents in his development of a planetarium, a model
of the solar based framework as it was known at the time. Utilizing a solitary drive shaft and
apparatuses with quantities of teeth in painstakingly picked proportions, every realized planet ought
to rotate with sensible precision around the sun in this model. The proportions would compare to
apportion between the length of the year on every planet and that on earth. To have the option
to make a physical model with actual gears, the number of teeth could be neither very huge nor
excessively little. Huygens found, for instance, for the deepest planet, Mercurius, a proportion of
25335=105190. Its proceeded with division is [0; 4; 6; 1; 1; 2; 1; 1; 1; 1; 7; 1; 2] and at first Huygens
utilized the fifth concurrent [0; 4; 6; 1; 1; 2] = 33 137. Afterward, he understood that, in spite of
the fact that utilizing the ninth merged would require such a large number of teeth: [0; 4; 6; 1; 1;
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2; 1; 1; 1; 1] = 204 847, yet since 204 = 12 17 en 847 = 7 121 this estimate can be utilized and
gives a superior outcome, when utilizing 4 gears with 12; 17; 7, and 121 teeth, two of these fixed
to a similar shaft.
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