
COMPLEXITY CLASSES

ALEX THOLEN

1. Preliminaries

Definition 1.1. A problem is described by giving a description of all of its parameters and
what properties the solution is supposed to satisfy.

For example, Sudoku is defined as giving the rules for sudoku (where each number appears
once in each square, row, and column) and the size of the grid - 9 x 9 for example.

Definition 1.2. An instance of a problem is described by describing the details for some
(or all, depending on the problem) of the parameters.

For example, an instance of Sudoku could be like this:

1 2

3

2 4

1

Definition 1.3. A solution of a problem to an instance is something that satisfies all of
the properties a solution of that problem must solve with the parameters described in the
instance.

For example, a solution of the 4x4 instance

1 2

3

2 4

1
would be

1 2 3 4

4 3 1 2

2 1 4 3

3 4 2 1

Definition 1.4. An algorithm for a problem is a step-by-step procedure for solving problems.
It is said to solve a problem Π if, given any instance of Π, the algorithm is guaranteed to
provide a solution for said instance.

Definition 1.5. A function problem Π is a triple (D,S, σ) that satisfies the following:

• D is the set of all instances of a problem.
• S is the set of all possible solutions to the problem.
• σ is a mapping from D to 2S.

Date: December 8, 2019.
1

2 ALEX THOLEN

For example, D might be the set of all Sudoku boards, with empty squares and even
boards with no solution, such as one with multiple of a number in the same row. S is the set
of all filled out Sudoku boards, and then σ is a mapping from D to 2S that given an element
of D outputs a set of elements of S that satisfy the problem.

Definition 1.6. If f and g are function N to N or R to R, then we say that f(x) = O(g(x))
if there exists c, L > 0 such that for all x > L f(x) < c · g(x).

There is no requirement for this to be the smallest g(x) that works. For example 7x4+3x2 =
O(ex), but it is best described as O(x4).

Definition 1.7. The time complexity of an algorithm to solve a problem is the function
where f(n) is the maximum amount of steps that algorithm could take to solve an instance
of size n. It is typically described in O notation.

Note that this definition doesn’t include what is considered a step and how to encode an
instance into a string to measure the size of. However, neither of these factors matter for
NP-completeness.

Definition 1.8. For an algorithm to solve a problem in polynomial time means that its time
complexity is a polynomial in terms of time.

Definition 1.9. A non-deterministic algorithm is an algorithm allowed to go down multiple
probability paths to find the answer. In other words, checking an answer, as then the
algorithm runs down the path of each possible solution and then checks if they are correct.

Definition 1.10. A problem is in NP if there is a non-deterministic algorithm that solves
it in polynomial time. In other words, if it takes polynomial time to check if an answer is
correct.

Definition 1.11. A problem Π is an NP-Complete problem if Π is in NP and if any NP
problem there is a polynomial time reduction from Π to that problem. In other words, if
given an oracle that could solve Π, could then be solved in polynomial time.

2. Another Solution Problem

Definition 2.1. Given a function problem Π = (D,S, σ) and an integer n, the Another So-
lution Problem (ASP) is the function problem Π[n] = (D[n], S, σ[n]) where D[n] = {(x, Sx)|x ∈
D,Sx ∈ σ(x), |Sx| = n} and σ[n](x, Sx) = σ(x)− Sx.

To put this in regular English, what this means is given n solutions to a problem, the
n-ASP is to find another solution.

Definition 2.2. The class FNP consists of function problems Π = (D,S, σ) such that the
following holds:

• There exists a polynomial p such that |s| ≤ p(|x|) holds for any x ∈ D and any s ∈ σ.
• For any x ∈ D and y ∈ S, the proposition y ∈ σ(x) can be determined in polynomial

time.

Definition 2.3. Let Π1 = (D1, S1, σ1) and Π2 = (D2, S2, σ2) be function problems. We say
that Π1 is polynomial-time ASP reducible to Π2 (denoted by Π1 � Π2) if there exists ψD, ψS

such that

• ψD is a polynomial-time computable mapping from D1 to D2.

COMPLEXITY CLASSES 3

• For any x ∈ D1, ψS is a polynomial-time computable bijection from σ1(x) to σ2(ψD(x)).

From this definition we can see that this property is invariant with respect to taking an
ASP. In other words, the following proposition:

Proposition 2.4. Π1 �ASP Π2 then Π1[n] �ASP Π2[n] for any nonnegative integer n.

Proposition 2.5. For any function problem Π = (D,S, σ) and nonnegative integers m,n,
then (Π[m])[n] �ASP Π[m+n].

Proof. An instance of (Π[m])[n] is of the form ((x, {s1, . . . , sm}), {t1, . . . , tn}) where x ∈
D, s1, . . . , sm, t1, . . . , tn ∈ σ(x). Now we can set ψD(x) to be (x, {s1, . . . , sm, t1, . . . , tn}).
Then the solutions of x are the same as the solutions of ψD(x) and so with ψS to be the
identity function this proposition holds. �

From these two propositions we can see the following result.

Theorem 2.6. Let Π be a function problem. If Π �ASP Π[1], then for any nonnegative
integers n < m we have Π[n] �ASP Π[m].

Proof. From 2.4 we can see that Π[n] �ASP (Π[1])[n], and from 2.5 we get that Π[n] �ASP

Π[n+1]. The rest comes from induction. �

3. ASP-Completeness

Definition 3.1. A function problem Π is ASP-complete if and only if Π ∈FNP, and Π′ �ASP

Π for any Π′ ∈FNP.

Proposition 3.2. Let Π and Π′ be function problems. If Π is ASP-complete, Π′ ∈FNP and
Π �ASP Π′, then Π′ is ASP-complete.

The ASP-complete problem we begin with is SAT. SAT represents the function problem
of satisfiability. In other words, given a first order logic statement the problem is either to
find a set of truth values that satisfies it or detect if there is one. We are dealing with the
first one. When [1] proved that SAT was NP-complete, he used an ASP reduction . That
implies the following theorem:

Theorem 3.3. SAT is ASP-complete

One important property of ASP-completeness is that it implies NP-completeness. Let’s
begin by showing that this is true for SAT.

Theorem 3.4. First that SAT �ASP SAT[1], and then using this for any nonnegative integer
n, SAT[n] is NP-complete

Proof. We will construct a polynomial time ASP reduction ψD, ψS from SAT to SAT[n]. To
construct ψD, we will construct a ψ′ from a ψ. They are both CNF formulas - a big string
of statements consisting of logical nots and logical ands. We make a new variable w, and for
each clause l1 ∨ l2 ∨ · · · ∨ lr in ψ, we make the clause l1 ∨ l2 ∨ · · · ∨ lr ∨ w to ψ′ . Then we
also add the clauses x ∨ w for each variable x. We define ψD to be (ψ′, {g}) where g is the
assignment in which all variables are true. For the second part to be true, using the first
part and 2.6 it becomes clear that SAT �ASP SAT[n] and thus SAT[n] is NP-complete. �

With this we can see the following theorem.

4 ALEX THOLEN

Theorem 3.5. For any ASP-complete function problem Π and any nonnegative integer n,
Π[n] is NP-complete.

Proof. Since Π is ASP-complete, we know that SAT �ASP Π. We can take the nth ASP
of both sides because of 2.4, and so we have SAT[n] �ASP Π[n] . Since we just proved that
SAT[n] is NP-complete in 3.4, we get that Π[n] is NP-complete. Note that this also applies
for Π, so this is relevant even with just the original problem. �

4. NP-complete Puzzles

4.1. Slither Link. The rules of Slither Link is as follows:

• Each problem is given a rectangular lattice. The length of sides of the rectangle (as
to the unit length of lattice) is called the size of the problem.
• A 1x1 square surrounded by four points is called a cell. A cell may have a number

out of 0,1,2, or 3.
• The goal is to make a loop which does not intersect or branch by connecting adjacent

dots with lines, so that a number on the cell is equal to the number of lines drawn
around it.

The following is an example of Slither Link.

1

1

2

3

3

0

3 2

0

2 1

1

2

3

3

0

3 2

0

2

To prove that Slither Link is ASP-complete (and so NP-complete) we will use two known
facts:

Lemma 4.1. To find a Hamiltonian circuit for a given planar graph with degree at most 3
is ASP-complete.

Lemma 4.2. Any planar graph with degree at most 3 with n vertices can be embedded in an
O(n) ·O(n) grid in polynomial time in n.

Now the proof.

Theorem 4.3. Finding a solution to a given instance of Slither Link is ASP-complete

Proof. The membership in FNP is easy to see. Now we will construct a polynomial time
ASP reduction from the restricted Hamiltonian circuit problem to the Slither Link problem.

Using 4.2, we can transform a graph G of the restricted Hamiltonian circuit problem
into a graph G′ on the grid. Now some points on this graph G′ have lattice points which
don’t correspond to any vertices of G. Those are points that don’t need to be visited when
considering Hamiltonian circuits of G′.

COMPLEXITY CLASSES 5

The strategy consists of turning points that need to be visited into one 6 x 6 grid, and
points that don’t need to be visited into another 6 x 6 grid, and that can become a Slither
Link grid. We turn a lattice point which doesn’t need to be visited into the top 6 x 6 grid,
and one that does into the bottom.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

1

1

0

1

0

0

0

0

0

0

0

100

0 0

We can join two gadgets by having a 3 x 6 border with either 0’s blocking it or 0’s
allowing passage. This means we can turn any restricted Hamiltonian circuit into a Slither
Link problem, and so Slither Link is ASP-complete and NP-complete. �

4.2. Sudoku. So the 9x9 sudoku isn’t quite general enough (after all, with just finite board
states a program could just test for all of them, becoming quick). So this is the general form:

• A problem is given as an n2 x n2 grid, which is divided into n x n squares. The value
n is called order.
• Some cells are filled with an integer from 1 through n2.
• The goal is to fill in all the blank cells so that each row, column, and n x n square

has each of the integers from 1 through n2 exactly once.

To show that this is ASP-complete, we will use Latin squares.

Definition 4.4. A Latin square of order n is a matrix such that each row and column
contains each integer from 1 through n exactly once. A partial Latin square is a matrix with

6 ALEX THOLEN

some blank entries such that each row and column contains each integer from 1 through n
at most once.

Theorem 4.5. The problem of partial Latin square completion is ASP-complete.

Proof. Coulbourn has proven that partial Latin square completion is NP-complete. His
reduction was what we defined as ASP reduction. �

Now let’s link these two problems together, with the following lemma.

Lemma 4.6. Let S be a Sudoku problem of order n such that

S(i, j) = ((i mod n)n+

⌊
i

n

⌋
+ j) mod n2

when (i, j) 6∈ B , where B = {(i, j)|
⌊
i
n

⌋
= 0 and (j mod n) = 0}, and is empty otherwise.

Then a square S ′ obtained by filling in the blanks of S is a solution to S if and only if

• For any (i, j) ∈ B, S ′(i, j) mod n equals 0.

• A square L defined by L(i, j
n
) = S(i,j)

n
for all (i, j) ∈ B is a Latin square

Proof. What this theorem means is shown below, and as such follows from the definition of
Sudoku. �

While what the previous theorem says may seem complicated, what it actually means is
that solving the Sudoku grid shown below is the same as the Latin square shown a bit farther
down (with this being the n = 2 case)

A0 01 C0 11

B0 11 D0 01

01 10 11 00

11 00 01 10

A C

B D

Now we can prove that Sudoku is ASP-complete.

Theorem 4.7. To find a solution to a given instance of Sudoku is ASP-complete.

Proof. The membership in FNP is immediate. It isn’t hard to check if a Sudoku board
satisfies all the conditions. Now we need to show a polynomial time ASP reduction from the
problem of partial Latin square completion to Sudoku.

For a given partial Latin square L of order n, we construct a Number Place problem S as
follows:

S(i, j) =


L(i, j

n
) · n if ((i, j) ∈ B,L(i, j

n
) 6= nothing

nothing if ((i, j) ∈ B,L(i, j
n
) = nothing

((i mod n)n+ b i
n
c+ j) mod n2 (otherwise)

We can see that this can be done quickly. Now we can also see from Lemma 4.6 that this can
be done in the other way. So, despite the fact that this doesn’t care about the vast majority

COMPLEXITY CLASSES 7

of Sudoku games, we can see that being ale to solve all of them would mean also being able
a partial Latin square, which is NP-complete. �

So, we can see that Sudoku is NP-complete and ASP-complete. That also means that
if you are given some amount of solutions to one layout, it is NP-complete to find another
one. [3] [2] [1]

References

[1] Cook. The complexity of theorem-proving procedures, 1971.
[2] Coulborn. The computational complexity of recognizing critical sets, 1983.
[3] Yato and Seta. Complexity and completeness of finding another solution and its application to puzzles.

2003.

	1. Preliminaries
	2. Another Solution Problem
	3. ASP-Completeness
	4. NP-complete Puzzles
	4.1. Slither Link
	4.2. Sudoku

	References

