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1. Introduction

Throughout the course of history, many civilizations have used different methods of pre-
venting outsiders and third parties from accessing confidential information. When the issue
at hand was secure messaging systems, one effective way was to encrypt messages using a
specific protocol, such as replacing each letter with a number. This way, only the involved
parties could accurately deduce the information. While many ciphers have become outdated
due to the numerous amounts of methods devised to break them, these classic ciphers con-
tinue to be involved in challenging and intriguing open questions. In this paper, we will
be covering the correlation between Markov Chains and a completely computer-automated
solution to substitution ciphers.

2. Definitions

A bigram is a string consisting of two letters in any fixed alphabet Σ. This alphabet
may consist of letters, numbers, etc. For instance, “AA”, “DC”, “X1” are all examples of
bigrams, while “ABC”, and “C” are not. For the sake of clarity, the bigrams in this paper
will be concerning letters from the English 26-letter alphabet.

The plaintext is the original text that one party wants to send to another party.

The ciphertext is the encrypted plaintext that can only be read and understood if de-
crypted properly.

A Markov Chain is a model that indicates the probability of moving to another state
given the current state. A very simple Markov Chain is in Figure 1, with each percentage
representing the likelihood of that even occurring given that the first even has just occurred.
For instance, if it rained today, the chance that it will be cloudy tomorrow is 30%.

A substitution cipher is a primitive method of encryption. The way a substitution
cipher works is by replacing all “A”s of a plaintext by a randomly selected letter from the
alphabet. Next, the “B”s are replaced by a letter different from the one already designated
for the “A”s. This continues until all “Z”s are replaced by the only remaining alphabet
letter. The process in which each letter is converted into a different letter in this process
can also be represented by a single permutation of the 26 letters. The nth letter in the
26-letter string would tell us what letter to change each nth letter in the alphabet with in
our plaintext message. We define the encryption key as the string of 26 letters we have
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Figure 1. A Simple Markov Chain. [3]

designated for each letter from A through Z.

Example: If the encryption key is QWERTYUIOPASDFGHJKLZXCVBNM, and we wanted
to encrypt the phrase “Have Fun”, we would replace “H” with “I”(the 8th letter), “A” with
“Q”(the first letter), and so on. Our final result would be IQCTYXF, with spaces omitted
to maximize security.

3. Problem Statement

Substitution ciphers can be broken through multiple methods, but one purely automatic
way is by running a computer program that involves the use of matrices and Markov Chains.
Markov Chains, due to their perfect modeling of a transition from one state to another, can
also be used to effectively evaluate the likelihood of one letter in the alphabet being followed
by another. As frequency models, Markov Chains allow for the calculation of a frequency
index, which can in turn analyze how plausible any given encryption key is. In order to in-
crease the efficiency of the decoding process, we will be exploring this Markov Chain method.

4. Solution

As an example of this method in effect throughout this paper, we will use the encryption
key “VIQZQKTNGXZQSAOFUQWGXZ” to encrypt a plaintext. Now the objective is to
find the key and be able to decrypt the text.
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Figure 2. A Matrix With Bigram Frequencies.

We will look at letter frequencies similar to the method of frequency analysis, but now we
will look at 2-letter frequencies; in other words, given a letter, we will look at the possible
frequencies of the following letter.

We can find these frequencies by investigating a sufficiently long English book, such as
The Big Blue Soldier which in brought from Project Gutenberg. For the sake of simplicity
in this paper, we will just be observing only the first approximately 50000 bigrams. Taking
every bigram and counting its frequency by inputting each entry into a 26 by 26 matrix
gives us the desired bigram frequencies. As shown in Figure 2, the letters in the rows (left)
correspond to the first letter in the bigram, and the letters on the columns (top) correspond
to the second letter in the bigram. Common bigrams such as “TH” appear many more times
(1482 times) than uncommon bigrams such as “BH” (2 times). Additionally, bigrams that
never appeared, such as “JB” were replaced with “0.25” instead of “0” to prevent a product
of 0. The reason for this will be clarified in more detail later in the paper.

Now, we will choose a random permutation of the letters from A through Z. Our encryp-
tion key will now be this string of 26 letters, so that in the plaintext, A is replaced by the
first letter in the permutation, B is replaced by the second, and so on. Since we will be
decrypting an encrypted ciphertext, we will be reversing the process mentioned above.

Example: If the encryption key was ”ASDFGHJKLQWERTYUIOPZXCVBNM” and the
ciphertext was “TDYFIG”, we would see that “T” corresponded to the 14th letter in our
permutation. Therefore, we wuld replace “T” with the 14th letter in the alphabet, “N”. For
“D”, we would notice it was the third letter in the permutation. Since the third letter in the
alphabet is “C”, “D” would be replaced by it. We would do the same for “Y”, “F”, “I” and
“G” to obtain the decrypted text “NCODQE”.

Once we decrypt our ciphertext message with this randomly selected permutation, we can
take all the bigrams that occur in our decrypted message and find their relative frequencies
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in the 26 by 26 matrix. Once we find all of the frequences, we multiply them together to
obtain a number n. The value of n is quite significant because it acts an index that shows
how accurate (i.e. how close to the original encryption key) a given permutation is. Larger
n indicate that there were more common bigrams in the decrypted text, while smaller n
indicate that the bigrams in the decrypted text were less common.

Example: Taking out ciphertext that we wish to decode, “VIQZQKTNGXZQSAOFUQWGXZ”,
we randomly choose our permutation to be ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”. By
applying our permutation to our ciphertext, we obtain “VIQZQKTNGXZQSAOFUQWGXZ”.
Now we will multiply the frequncies of all the appearing bigrams in this text together in the
following fashion: “VI” has frequency 40, “IQ” has frequency 0.25, “QZ” has frequency
0.25, “ZQ” has freuquency 0.25, “QK” has frequency 0.25, and so on. Now we multiply all
of these frequencies to get a frequency index of our given permutation, which we call “n”.
For the above permutation, our n ≈ 12936805.96.

Our next step is to analyze the value we have found and how likely our combination is
really the plaintext message. The smaller the value n is, the less likely our combination
is. If our value of n does not indicate a plausible combination, we will randomly select two
different spaces in our 26-letter permutation and switch them around.

After doing so, we will start again with the process of decrypting using our key. We pro-
ceed to calculate a nnew value for our new decryption. If this new value is greater than our
original n (which we will call nold for the sake of clarity), we will obtain the new permutation
and repeat our process.

Example: we will randomly switch the letters A and X to get “XBCDEFGHIJKLMNOPQRSTU-
VWAYZ” as our new permutation. Decoding the ciphertext with this key, we get “VIQZQK-
TNGAZQSXOFUQWGAZ”. We now calculate nnew by starting the process again from the
beginning: “VI” has frequency 40, “IQ” has frequency 0.25, “QZ” has frequency 0.25, “ZQ”
has frequency 0.25, “QK” has frequency 0.25, and so on. Eventually, multiplying these to-
gether, our result is nnew ≈ 1316486866617.6. Since nnew > nold, we forget our original
permutation and adopt the new one, namely “XBCDEFGHIJKLMNOPQRSTUVWAYZ”.

However, if nnew is smaller than nold, we would think of trying to abandon our new possi-
bility. But this should not be the case because this leads to a possibility of an optimization
loop, where the correct permutation may never be achieved simply due to the fact that one
permutation possesses an abnormally high value of n. In this case, we will select nnew with
probability nnew

nold
. Therefore, the larger nnew is, the higher to probability it is for us to switch

(Now we see why replacing the 0 frequencies with “0.25” was a good idea. If we kept all
the “0”s, not only would most of our values of n be equal to 0, the probability of the switch
happening would be impossible to calculate due to a zero in the denominator!).

Example: Consider the following switch that replaces “O” with “J” and vice versa. Now
we obtain the new decoded ciphertext: “VIQZQKTNGAZQSXJFUQWGAZ”. Calculating n
using the same method, we see that n ≈ 1261002745.8. Here, nnew < nold. Now, we will
forget our old permutation and proceed with the new one with probability nnew

nold
, which in this
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Figure 3. An Iteration of the Markov Chain Method on Hamlet

case is 1
1044

. In this example, we end up not switching and retaining the old one, namely
“XBCDEFGHIJKLMNOPQRSTUVWAYZ”.

After switching or retaining the original permutation, we will continue switching the origi-
nal permutation around, one 2-letter-pair at a time. Each time, we can repeat the process by
multiplying all bigram frequencies, then analyzing and comparing nold to nnew. Gradually,
we will see an increase in the value of n and will also start to see a comprehensible message.
Although the program does not physically come to a halt when a sufficiently high value of
n is reached, the program eventually reaches a permutation that has such a high n that it
is near impossible for the program to switch any pair of letters and obtain a better index n.
By having the program print out the current state of its decrypted message every 50 or 100
steps, one can eventually see a near-constant decryption text. By filling in necessary errors
such as switching a “Q” with an “X”, the full message can be decoded. An example by Persi
Diaconis’ students Marc Coram and Phil Beineke involving Shakespeare’s play Hamlet is
shown in Figure 3, with the iteration number on the left [2]. As displayed, after just 1900
iterations, the message has been fully decrypted and matches with the original text verbatim.

Example: In our case, the plaintext of our ciphertext that is decoded with the correct
key ”QWERTYUIOPASDFGHJKLZXCVBNM” is ”WHATAREYOUTALKINGABOUT”.
This text has a very high frequency, namely n ≈ 2.82905 ∗ 1050. Due to this high frequency,
any new possibilities would have a very slim chance of replacing of this primary permutation.

5. Summary

Although this method seems to have many steps and seems very complicated, all of these
steps may be very easily processed using a computer system. For instance, the probability of
switching from one permutation to another could be replicated by a random integer function.
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By running this program on a computer, we can quickly obtain the original message without
having to do any 1-letter frequency analysis, which is often done manually with multiple
guesses.

However, with the advent of new words and vocabulary such as text message slang, this
method of finding and determining adequate n becomes ever-so-challenging. By referencing
a classic book that does not include vocabulary such as “ttyl” or “brb”, a computer system
may easily skip over a very plausible combination due to the fact that it does not recognize
more modern forms of communication. On the other hand, by referencing a text-message
conversation between two people from the 21st century in order to derive bigram frequencies,
it may be hard to determine a document encoded 500 years ago in Old English. Our versatile
and volatile English language leaves cryptography a fast-moving and fast-changing subject,
open to anyone for new interpretations and solutions.

References

[1] Chen, Jian, and Jeffrey S. Rosental. Decrypting Classical Cipher Text Using Markov Chain Monte Carlo.
Springer, 1 Apr. 2011, probability.ca/jeff/ftpdir/decipherartpub.pdf.

[2] Diaconis, Persi. “The Markov Chain Monte Carlo Revolution.”

[3] “A Markov Chain.” Tech-Effigy, 8 Jan. 2015,
techeffigytutorials.blogspot.com/2015/01/markov-chains-explained.html.

[4] Rubinstein-Salzedo, Simon. “19. Markov Chains.” Cryptography, by Simon Rubinstein-Salzedo, Springer,
2018, pp.221-230.


	1. Introduction
	2. Definitions
	3. Problem Statement
	4. Solution
	5. Summary
	References

