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Abstract

In this paper, we start from the theory of elliptic functions and show
how it gives rise to a natural construction of the j−function. After this,
we show how j being an integer can explain the observed closeness of
eπ

√
n, for certain values of n, to integers. Then we turn briefly to binary

quadratic form theory to help state a theorem about algebraic integer
values of j, as well as the celebrated Baker-Stark-Heegner Theorem, in
binary quadratic form terminology. The latter theorem helps us to know
arguments τ for which j(τ) is an actual integer.

1 Introduction

Is it a lucky coincidence that

eπ
√
163 = 262, 537, 412, 640, 768, 743.999, 999, 999, 999, 250 . . .

is extremely close to an integer, or is something deep going on behind the scenes?
The phenomenon, though rare, is not isolated:

eπ
√
43 = 884, 736, 743.999, 777, . . . ,

eπ
√
67 = 147, 197, 952, 743.999, 998, . . . .

The explanations (section 3) for these observations are highly non-trivial and
rely on quite deep theorems (theorems 3.1 and 4.3) concerning the j−function
(definition 2.2):

j(τ) = q−1 + 744 + 196, 884q + 21, 493, 760q2 + . . . ,

a function which arises naturally from homogeneity properties of certain series
called Eisenstein series, which in turn come naturally from a consideration of
elliptic functions.
The algebraic integer values of j are intimately tied to binary quadratic forms
(theorem 4.3), and the Baker-Stark-Heegner theorem (theorem 4.4) tells us that
our method of section 3 will not be able to find an integer n > 163 for which

eπ
√
n is closer to an integer than eπ

√
163.
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2 The j−function naturally arising from elliptic
function theory.

The j−function (definition 2.2) is naturally defined as a certain quotient involv-
ing Eisenstein series. The latter occur as the coefficients of the Laurent series
expansion of the Weierstrass elliptic function ℘ about the origin. Accordingly,
we begin with a review of elliptic function theory in 2.1. The reader desiring
proofs of the statements made there is referred to the excellent texts [3], [11]
and [10].
The next important step is to obtain a Fourier series expansion for j. In Section
2.2, where we define the Eisenstein series order 2 (definition 2.4 and theorem
2.2), we prove an essential result on the invariance of lattices under SL2 which
can be used to establish the periodicity of j, after which the Fourier series ex-
pansion with integer coefficients can be deduced as in [3]. But we derive the
expansion of j in an alternative way in 2.3 where we simultaneously derive an
extremely important product development (theorem 2.4) for the discriminant
function (definition 2.1).

2.1 Elliptic function theory and the j−function.

Here we define the Weierstrass ℘−function, the Eisenstein series, the discrim-
inant function (definition 2.1), and show how they naturally give rise to the
j−function (definition 2.2).
Given any non-degenerate parallelogram in the complex plane C, say with ver-
tices at 0, ω1, ω2 and ω1 + ω2, where

ω1

ω2
̸∈ R (this last condition is equivalent

to saying that the parallelogram does not degenerate into a line), there is a
very simple way to construct a non-trivial function with two fundamental pe-
riods (fundamental in the sense that there are no periods of modulus smaller
than that of ω1 or ω2) given by ω1 and ω2. (Note that in this case a complex
number is a period, not necessarily fundamental, if and only if it is of the form
mω1+nω2, where m and n are integers. These periods are said to form a lattice
Λ = {mω1 + nω2 : m,n ∈ Z}. The periods themselves are the lattice points).
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In fact, the function
1

z2
+
∑
ω∈Λ
ω ̸=0

{
1

(z − ω)2
− 1

ω2

}
,

fulfills this requirement. This absolutely convergent series which represents a
meromorphic function with poles (double poles) exactly at the lattice points, is
called the Weierstrass ℘−function so that

℘(z) =
1

z2
+
∑
ω∈Λ
ω ̸=0

{
1

(z − ω)2
− 1

ω2

}
,

with respect to the lattice Λ. The ℘−function is an example of an elliptic
function, which means a meromorphic and doubly periodic function; doubly
periodic, in turn, means that the function has two periods with non-real ratio,
the latter condition avoiding uninteresting cases.
All elliptic functions have the same number of zeros as they have of poles in a
fundamental parallelogram, if we count these with multiplicity; this means that
the elliptic function ℘′(z), which has a triple pole exactly at each lattice point
of Λ, has three zeros in each fundamental parallelogram. In fact, these zeros
are all simple and are located at the half-periods, ω1

2 , ω2

2 and ω1+ω2

2 , of ℘. It
can be shown, by means of Liouville’s Theorem in complex analysis, that the
Weierstrass ℘−function satisfies the cubic first-order differential equation:

(℘′(z))2 = 4
(
℘(z)− ℘

(ω1

2

))(
℘(z)− ℘

(ω2

2

))(
℘(z)− ℘

(
ω1 + ω2

2

))
.
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We can expand the Weierstrass ℘−function as a Laurent series centred at the
origin, and then we obtain the expression

℘(z) =
1

z2
+

∞∑
n=1

(∑
ω∈Λ∗

2n+ 1

ω2n+2

)
z2n,

where Λ∗ = Λ\{0}. The series

E2n(ω1, ω2) :=
∑
ω∈Λ∗

1

ω2n
, n ≥ 2

is called an Eisenstein series with respect to the lattice Λ. We require that
n ≥ 2 because the series

∑
ω∈Λ∗

1
ω2 is not absolutely convergent. Thus the

Laurent series expansion of the Weierstrass ℘−function centred at the origin is
expressible in terms of Eisenstein series as

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)E2n+2(ω1, ω2)z
2n.

The Eisenstein series E2n(ω1, ω2) is homogeneous of degree −2n because, for
λ ̸= 0, we have

E2n(λω1, λω2) = λ−2n
∑
ω∈Λ∗

1

ω2n
.

The differential equation for ℘(z) in terms of Eisenstein series becomes:

(℘′(z))2 = 4(℘(z))3 − 60E4(ω1, ω2)℘(z)− 140E6(ω1, ω2).

But we have shown above that ℘′(z) has only three simple zeros; this means
that the roots of the cubic equation in ℘(z),

4(℘(z))3 − 60E4(ω1, ω2)℘(z)− 140E6(ω1, ω2) = 0,

are all distinct. In turn, this means that the discriminant of the cubic polynomial
in question is always nonzero, no matter the choice of the lattice Λ (as long as
the ratio of the fundamental periods is non-real), so that

(60E4(ω1, ω2))
3 − 27(140E6(ω1, ω2))

2 ̸= 0.

We see that the discriminant (60E4(ω1, ω2))
3 − 27(140E6(ω1, ω2))

2, which for
brevity, we can denote by ∆(ω1, ω2), is homogeneous of degree 12. This means
that the function:

E3
4(ω1, ω2)

∆(ω1, ω2)

is homogeneous of degree zero.

Definition 2.1 (discriminant function ∆).

∆(τ) := (60E4(τ))
3 − 27(140E6(τ))

2.
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We may therefore scale our lattice by the factor 1
ω1

and, if we denote ω2

ω1
:= τ ,

can consider without loss of generality the function of the single complex variable

E3
4(1, τ)

∆(1, τ)

which we can also write as
E3

4(τ)

∆(τ)
.

The last function, when viewed as a function of τ in the open upper half-plane,
i.e. when ℑ(τ) > 0, is denoted by

1

7203
j(τ),

where j(t) is called the j−function i.e.

Definition 2.2 (The j−function).

j(τ) := 7203
E3

4(τ)

∆(τ)
=

1728(60E4(τ))
3

∆(τ)
=

1728(60E4(τ))
3

{(60E4(τ))3 − 27(140E6(τ)2}
,ℑτ > 0.

Sometimes, we also write

Definition 2.3.

J(τ) :=
1

1728
j(τ) =

(60E4)
3

∆(τ)
.

2.2 Lattice Invariance and j’s invariance.

Theorem 2.1 proved here can be used to establish periodicity of j, after which a
Fourier expansion with integer coefficients can be derived for j. For this method
of derivation, the reader can consult [3].
With any lattice Λ with fundamental periods ω1 and ω2, we can perform any
transformation (

a b
c d

)
where a, b, c and d are integers such that ad− bc = ±1, on the periods, and the
effect of this transformation on the lattice Λ is to leave it completely unaffected
except for the fact that the lattice points are permuted among themselves. We
can enunciate the following theorem:

Theorem 2.1. Given two complex numbers ω1 and ω2, such that ω2

ω1
̸∈ R, gen-

erating the lattice Λ = {mω1 + nω2 : m,n ∈ Z}, if we apply the transformation(
w′

2

w′
1

)
=

(
a b
c d

)(
w2

w1

)
,

where a, b, c, d ∈ Z, then the lattice Λ′ := {mω′
1 + nω′

2 : m,n ∈ Z} is equal to Λ.
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Proof. Since

w′
2 = aw2 + bw1

w′
1 = cw2 + dw1

we therefore have, for any m,n ∈ Z, that mw′
2 + nw′

1 = (am + nc)w2 + (mb +
nd)w1 so that Λ′ ⊆ Λ. Now since ad− bc = ±1 and in particular ̸= 0, therefore
the given matrix is invertible and we obtain(

w2

w1

)
= ±

(
d −b
−c a

)(
w′

2

w′
1

)
from which we similarly deduce that Λ ⊆ Λ′. It follows that Λ = Λ′.

This means that, under such transformations(
a b
c d

)
,

where a, b, c and d are integers such that ad − bc = ±1, of the fundamental
periods ω1 and ω2, the (absolutely convergent) Eisenstein series E2n(ω1, ω2), n ≥
2 are unaffected. In particular, since we have already shown that the function

E3
4(τ)

∆(τ)

is homogeneous of degree 0, it is unchanged if we replace τ by aτ+b
cτ+d . We note

that if ℑ(τ) > 0, then ℑ
(

aτ+b
cτ+d

)
= ad−bc

|cτ+d|2ℑ(τ). So that if it is the case that

ad− bc = 1, then ℑ
(

aτ+b
cτ+d

)
= 1

|cτ+d|2ℑ(τ) > 0.

Now when ℑ(τ) > 0 and q = e2πiτ , the Eisenstein series have a particularly
nice representation in terms of the sums-of-powers-of-divisors function σk(n) =∑

d|n n
k:

E2k(τ) = 2ζ(2k) + 2
(−1)k(2π)2k

(2k − 1)!

∞∑
r=1

σ2k−1(r)q
r, k ≥ 2,

where ζ is the Riemann zeta function which, on ℜ(s) > 1 is defined by the
Dirichlet series

ζ(s) =

∞∑
n=1

1

ns
.

Incidentally, the expression on the right converges even when k = 2 and it is
thus that E2(τ) can be defined. We have therefore

Definition 2.4 (Eisenstein series of order 2).

E2(τ) := 2ζ(2)− 8π2
∞∑
r=1

σ(r)qr.
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Now we recall that ζ(2k), when k ∈ Z>0, has been evaluated in closed form
by Euler and ζ(2k) turned out to be a rational number times π2k. These rational
numbers are called Bernoulli numbers. Specifically, the Bernoulli numbers are
defined by the coefficients B2n in the power series expansion

x

2
cot

x

2
=

∞∑
n=0

(−1)nB2n

(2n)!
x2n.

We note that B1 := − 1
2 and B2n+1 = 0 for n ≥ 1, by definition. Euler has

proved, by using the Taylor series and Hadamard product expansions for the
sine function, that

ζ(2k) =
(−1)k−122k−1B2k

(2k)!
π2k, k ≥ 1.

That the Bernoulli numbers are all rational can be seen in by employing the
Taylor series expansion for the exponential function in the generating function

z

ez − 1
=

∞∑
n=0

Bnz
n

n!
, |z| < 2π,

performing cross-multiplication and equating coefficients on both sides to re-
cursively deduce that Bn ∈ Q for all n. The first few Bernoulli numbers are
B0 = 1, B1 = − 1

2 , B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 , . . . . The

Bernoulli numbers make the aforementioned expressions for the Eisenstein series
particularly nice: we have

E2k(τ) = 2ζ(2k) + 2
(−1)k(2π)2k

(2k − 1)!

∞∑
r=1

σ2k−1(r)q
r

=
(2π)2k(−1)k−1B2k

(2k)!

{
1− 4k

B2k

∞∑
r=1

σ2k−1(r)q
r

}
, k ≥ 1,ℑτ > 0, q2πiτ .

It will be useful shortly to explicitly state the expressions for the first three
Eisenstein series(these are the most important of all, because all other Eisenstein
series (of higher order than 6) can be expressed as polynomial in E4(τ) and E6(τ)
with rational coefficients. Thus

Theorem 2.2.

E2(τ) =
π2

3

{
1− 24

∞∑
r=1

σ(r)qr

}
,

E4(τ) =
π4

45

{
1 + 240

∞∑
r=1

σ3(r)q
r

}
,

E6(τ) =
2π6

945

{
1− 504

∞∑
r=1

σ5(r)q
r

}
.
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2.3 Expansion of j−function in powers of q.

It is possible to use the invariance of j(τ) under SL2(Z), i.e. under transforma-
tions of the type

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1,

as well as the Eisenstein series expansions in terms of σk to derive a Fourier
expansion for ∆(τ); after which it is possible to demonstrate the remarkable
result that

1

1728
J(τ) = j(τ) =

1

q
+ 744 +

∞∑
n=1

c(n)qn,

where c(n) are all positive integers. For this method of proof, the interested
reader is referred to pp. 17-21 of [3]. However, this result can also be demon-
strated by first showing that

∆(τ) = (2π)12q

∞∏
n=1

(1− qn)24.

For then

1728J(τ) = j(τ) =
1728(60E4(τ))

3

∆(τ)

=
603

4096

1728 (1 + 240
∑∞

n=1 σ3(n)q
n)

3

qπ12
∏∞

n=1(1− qn)24

=
(1 + 240

∑∞
n=1 σ3(n)q

n)
3

q
∏∞

n=1(1− qn)24
.

and from this representation it is immediately clear that

j(τ) = q−1 + 744 +

∞∑
n=1

c(n)qn,

where c(n) is a positive integer because of the expansions

∞∏
n=1

(1− qn)−1 =

∞∏
n=1

(
1 + qn + q2n + . . .

)
,

giving

j(τ) = q−1

(
1 + 240

∞∑
n=1

σ3(n)q
n

)3

·
∞∏

n=1

(1 + qn + q2n + . . . ).

We must therefore prove that ∆(τ) = (2π)12q
∏∞

n=1(1−qn)24. There are several
proofs of this fact. One of them depends on a well-known transformation formula
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of the Dedekind η−function of which Siegel has given a short proof in [8]. This is
also the subject of Chapter 3 in [3] where, in Theorem 3.3, Apostol proves that
∆(τ) = (2π)12q

∏∞
n=1(1 − qn)24, using a simple but non-elementary method.

However, it is possible to prove that ∆(τ) = (2π)12q
∏∞

n=1(1− qn)24 using only
elementary methods of Ramanujan. The following lemma is proved in [4] using
elementary methods.

Lemma 2.3.

240

∞∑
r=1

rσ3(r)q
r =

{1− 24
∑∞

k=1 σ(r)q
r} {1 + 240

∑∞
k=1 σ3(r)q

r} − {1− 504
∑∞

r=1 σ5(r)q
r}

3

−504

∞∑
r=1

rσ5(r)q
r =

{1− 24
∑∞

k=1 σ(r)q
r} {1− 504

∑∞
r=1 σ5(r)q

r} − {1 + 240
∑∞

r=1 σ3(r)q
r}2

2

Proof. The proof is given in Theorem 4.2.3 in [4].

Now we can prove the following theorem, which is Theorem 4.2.4 in [4]:

Theorem 2.4 (Product development of ∆).

∆(τ) = (2π)12q

∞∏
n=1

(1− qn)24, q = e2πiτ ,ℑ(τ) > 0.

Proof. Firstly, let ℑ(τ) ≥ t > 0. Then, for n ∈ Z>0, if we take the principal
branch of the logarithm,

| log (1− qn)| =
∣∣∣∣−qn − q2n

2
− q3n

3
− q4n

4
− . . .

∣∣∣∣
≤ |q|n +

|q|2n

2
+

|q|3n

3
+

|q|4

4
+ . . .

≤ e−2πnt +
e−4πnt

2
+

e−6πnt

3
+

e−8πnt

4
+ . . .

< e−2πnt + e−4πnt + e−6πnt + e−8πnt + . . .

=
e−2πnt

1− e−2πnt

=
1

e2πnt − 1
.

But now
∑∞

n=1
1

e2πnt < ∞ as this is a convergent geometric series; so that,
by the limit comparison test, for example,

∑∞
n=1

1
e2πnt−1 < ∞. Hence, by

the Weierstrass M−test,
∑∞

n=1 log (1− qn) converges absolutely and uniformly
on every compact subset of the open upper half-plane ℑ(τ) > 0. (so it is
holomorphic on ℑτ > 0). Since, moreover, the term-wise differentiated series∑∞

n=1
−nqn−1

1−qn < ∞ (because it equals
∑∞

n=1 σ(n)q
n and σ(n) < 1+2+ · · ·+n =

n2+n
2 < n3 for sufficiently large n, and the power series

∑∞
n=1 n

3qn in q has
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radius of convergence 1, i.e. exactly when ℑτ > 0) it follows that logarithmic
term-wise differentiation is permitted so that

q
d

dq

{
log

(
q

∞∏
n=1

(1− qn)24

)}
= q

{
1

q
−

∞∑
n=1

nqn−1

1− qn

}

= 1− 24

∞∑
n=1

nqn

1− qn
.

But now

(60E4(τ))
3−27(140E6(τ))

2 = π12

(
4

3

)3
(
1 + 240

∞∑
r=1

σ3(r)q
r

)3

− 27π12

(
280

945

)2
(
1− 504

∞∑
r=1

σr(5)q
r

)2

=
64

27
π12


(
1 + 240

∞∑
r=1

σ3(r)q
r

)3

−

(
1− 504

∞∑
r=1

σr(5)q
r

)2


We should therefore equivalently be proving that(
1 + 240

∞∑
r=1

σ3(r)q
r

)3

−

(
1− 504

∞∑
r=1

σ5(r)q
r

)2

= 1728q

∞∏
n=1

(1− qn)24.

By logarithmic differentiation, we can at least try to show that

q
d

dq
log

(1 + 240

∞∑
r=1

σ3(r)q
r

)3

−

(
1− 504

∞∑
r=1

σ5(r)q
r

)2
 = 1−24

∞∑
n=1

nqn

1− qn
.

The left side is equal to

720 (1 + 240
∑∞

r=1 σ3(r)q
r)

2∑∞
r=1 rσ3(r)q

r−1 + 1008 (1− 504
∑∞

r=1 σ5(r)q
r)
∑∞

r=1 rσ5(r)q
r−1

(1 + 240
∑∞

r=1 σ3(r)qr)
3 − (1− 504

∑∞
r=1 σ5(r)qr)

2

Direct substitution of the results in the previous lemma shows that the last
expression is equal to

1− 24

∞∑
n=1

nqn

1− qn
.

We have therefore successfully shown that

d

dq
log

(1 + 240

∞∑
r=1

σ3(r)q
r

)3

−

(
1− 504

∞∑
r=1

σ5(r)q
r

)2
 =

d

dq

{
log

(
q

∞∏
n=1

(1− qn)24

)}
.
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By integrating both sides and exponentiation, we find that(
1 + 240

∞∑
r=1

σ3(r)q
r

)3

−

(
1− 504

∞∑
r=1

σ5(r)q
r

)2

= cq

∞∏
n=1

(1− qn)24,

for some constant c. By equating coefficients of q on both sides we find that

3(240) + 2(504) = 1728 = c.

This concludes the proof.
Now we know that, in the series development,

j(τ) = q−1 + 744 +

∞∑
n=1

c(n)qn,

the c(n)’s are all positive integers. By actual expansion

j(τ) =
(1 + 240

∑∞
n=1 σ3(n)q

n)3

q
∏∞

n=1(1− qn)24
= q−1

(
1 + 240

∞∑
n=1

σ3(n)q
n

)3

·
∞∏

n=1

(1+qn+q2n+. . . ),

for example, we could even calculate the first few values as

c(1) = 196, 884, c(2) = 21, 493, 760, . . . ,

so that
j(τ) = q−1 + 744 + 196, 884q + 21, 493, 760q2 + . . . .

3 Connection between j and almost-integers eπ
√
n.

By the way we have defined the function j(τ) so far, it might come as a surprise
that

Theorem 3.1 (Explicit values of j).

j

(
1 +

√
−47

2

)
= −(960)3

j

(
1 +

√
−67

2

)
= −(5280)3

j

(
1 +

√
−163

2

)
= −(640320)3

Proof. Reference to a proof can be found in [9].
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These are essentially what explain the closeness of eπ
√
47, eπ

√
67 and eπ

√
163.

For example, the spectacular string of twelve consecutive 9’s after the decimal
point, of

eπ
√
163 = 262, 537, 412, 640, 768, 743.999999999999250

can be seen as follows: letting τ = −1+i
√
163

2 in definition 2.2, so that q =

eπi(−1+i
√
163) = −e−π

√
163, we have, using theorem 3.1

j(τ) = e−πiτ + 744 + 196, 884eπiτ + 21, 493, 760e2πiτ + . . .

∴ (640320)3 = eπ
√
163 − 744 +

(
196, 884e−π

√
163 − 21, 493, 760e−2π

√
163 − . . .

)
.

The bracketed terms evaluate to an extremely small positive number because

the coefficients of powers of e−π
√
163 grow sufficiently slowly compared to those

powers, since if we put

j(τ) = q−1 + 744 +

∞∑
n=1

c(n)qn

then

Theorem 3.2 (rate of growth of coefficients of j).

c(n) ∼ e4π
√
n

√
2n

3
4

, n → ∞.

Proof. This is due to Petersson and Rademacher independently. For a reference
consult [3].

We therefore have, to a very close approximation,

−(640320)3 ≈ eπ
√
163 + 744− 196884e−π

√
163,

making eπ
√
163 only very slightly smaller than a positive integer.

4 Binary Quadratic Forms and j.

Can we make eπ
√
n as close as desired to a positive integer, by making suitable

choices of n? This is not the case, at least not by the previous procedures
involving the j-function. In order to explain why this is so, we need to pay
a short visit to binary quadratic forms first. The reader who is interested in
learning more about binary quadratic forms is referred to [5] and [1].
The remarkable theorem connecting the j−function and binary quadratic forms
is theorem 4.3 below. The Baker-Stark-Heegner theorem (theorem 4.4), makes
163 very special in that we cannot hope, by the present methods at least, to
find a positive integer value of n which makes eπ

√
n closer to a positive integer

than n = 163.
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4.1 Terminology

A function
f(x, y) = ax2 + bxy + cy2

for some numbers a, b and c (in this account, a, b and c will always be integers)
is called a binary quadratic form (we will use the abbreviation BQF for short
throughout.)
An integer is represented by a BQF if there are integers x and y such that

f(x, y) = n.

n is properly represented if, in addition to being represented by f(x, y), gcd(x, y) =
1.
A BQF is said to be positive semidefinite if it represents only nonnengative in-
tegers.
It is negative semidefinite if it represents only nonpositive integers.
If a BQF is semidefinite (either positive or negative semidefinite), it is said to
be definite if the following implication is true:

f(x, y) = 0 =⇒ x = y = 0.

A BQF is indefinite if it represents both positive and negative integers. For
example, x2 + y2 is positive definite while −x2 − y2 is negative definite.

4.2 The Discriminant.

Definition 4.1. The number b2 − 4ac is called the discriminant of f(x, y) and
is often denoted by d or Disc(f).

Disc(f) is immensely important, as we shall see.

Theorem 4.1. (a) If d > 0, then f is indefinite.

(b) If d = 0, then f is semidefinite.

(c) If d ̸= 0 and is not a perfect square, then f is definite.

(d) If d < 0, then f is definite.

Proof. For proofs see [6].

Now, we will turn to transformations of binary quadratic forms. Given a
BQF

f(x, y) = ax2 + bxy + cy2

we can replace x and y by linear forms αx+βy in x and y to obtain a transfor-
mation of the BQF. In this way, we can put(

x
y

)
=

(
α β
γ δ

)(
x′

y′

)

13



where α, β, γ, δ ∈ Z, and then

f(x′, y′) = Ax′2 +Bx′y′ + Cy′2

where A,B and C are functions of α, β, γ and δ.
Note that the transformations are invertible provided that

det

(
α β
γ δ

)
= αδ − βγ = ±1.

Now we will consider the question of equivalence of binary quadratic forms.
Two BQFs

g(x, y) and f(x, y)

are said to be equivalent if

g(x, y) = f(αx+ βy, γx+ δy),

where
αδ − βγ = ±1.

If αδ − βγ = 1, then g and f are properly equivalent.
If αδ − βγ = −1, then g and f are improperly equivalent.
Equivalent binary quadratic forms represent exactly the same integers, because
one can always be transformed into the other.
A question may arise: given a BQF f and a transformation of f into another
BQF g, how is Disc(g) related to Disc(f)? Suppose that

f(x, y) = ax2 + bxy + cy2

so that
Disc(f) = b2 − 4ac.

Also suppose that f(x′, y′) is transformed into g(x, y) by the transformation(
x′

y′

)
=

(
α β
γ δ

)(
x
y

)
where α, β, γ, δ ∈ Z. Then

g(x, y) = f(αx+ βy, γx+ δy)

= a(αx+ βy)2 + b(αx+ βy)(γx+ δy) + c(γx+ δy)2

= (aα2 + bαγ + cγ2)x2 + (2aαβ + b(αδ + βγ) + 2cγδ)xy

+ (αβ2 + bβδ + cδ2)y2

∴ Disc(g) = (2aαβ + b(αδ + βγ) + 2cγδ)2 − 4(aα2 + bαγ + cγ2)(αβ2 + bβδ + cδ2)

Now if one expands this out and cancel as many terms as possible, one obtains

Disc(g) = b2α2δ2 − 2b2αβγδ + b2β2γ2 − 4acα2δ2 + 8acαβγδ − 4acβ2γ2

14



and if one looks carefully one finds that this is expressible as

Disc(g) = (b2 − 4ac)(α2δ2 − 2αβγδ + β2γ2) = (b2 − 4ac)(αδ − βγ)2.

So we end up with the following result:

Theorem 4.2. If f and g are two BQF and if

(
α β
γ δ

)
, where α, β, γ, δ ∈ Z,

transforms f into g, then

Disc(g) = Disc(f)(αδ − βγ)2.

As a corollary we find that

Corollary. If f and g are two equivalent binary quadratic forms (meaning that
αδ − βγ = ±1), then

Disc(f) = Disc(g)

We note that the converse is false, i.e. if

Disc(f) = Disc(g)

it does not necessarily imply that f and g are equivalent. For example, the
BQF x2 + y2 and −x2 − y2 have the same discriminant −4 but are clearly not
equivalent because equivalent forms represent the same numbers but x2 + y2 is
positive definite while −x2 − y2 is negative definite, and so they clearly cannot
represent the numbers, and cannot therefore be equivalent.
We also note the following: suppose f can be transformed into g, and g turns
out to have the same discriminant as f , and moreover this common discriminant
is nonzero. Then, the equation

Disc(g) = Disc(f)(αδ − βγ)2

shows that
(αδ − βγ)2 = 1

and so the BQF f and g are actually equivalent
It turns out that if d < 0 is any integer, then we can find only finitely many pos-
itive definite binary quadratic forms f, g, . . . such that Disc(f) = Disc(g) = . . .
and f, g, . . . are pairwise inequivalent.
Naturally, we now want to count exactly how many pairwise inequivalent pos-
itive definite binary quadratic forms of discriminant d < 0 we can find. Before
doing this, however, it turns out to be useful to define a last notion:
If f(x, y) = ax2+bxy+cy2 is a binary quadratic form, we say that f is primitive
if gcd(a, b, c) = 1.
Now we define the class number:

Definition 4.2. The number of primitive positive definite binary quadratic
forms whose discriminant is d < 0, is denoted by h(d), and is called the class
number of d < 0.

15



4.3 Connection between j and Binary Quadratic Forms

There is an extremely remarkable and unexpected connection between the j−functions
which we have seen arises naturally out of a discussion of elliptic functions, and
binary quadratic forms. To understand the connection, we make a few defini-
tions.

Definition 4.3. An algebraic number is a number that is a root of a nonzero
polynomial with integer coefficients.

Definition 4.4. An algebraic integer is an algebraic number that is a root of
a polynomial whose highest-degree term has a 1 as coefficient.

Definition 4.5. The degree of an algebraic integer is the degree of the lowest-
degree polynomial with leading coefficient 1 satisfied by the algebraic integer.

Example. (a) An integer n is an algebraic integer of degree 1 because x−n =
0 is the polynomial of smallest degree satisfied by n. (notice the uniqueness
of this polynomial)

(b) A surd
√
d, where d is an integer which is not a perfect square, is an

algebraic integer of degree 2 because its minimal polynomial is x2−d = 0.
(again polynomial is unique)

Here is the remarkable connection between the j−function and binary quadratic
forms:

Theorem 4.3 (algebraic integer values of j). Let d < 0 be a negative integer.
And let f(x, y) = ax2+bxy+cy2 be a primitive positive definite binary quadratic
form of discriminant d.( Note that a, c > 0 necessarily.) Then

j

(
−b+

√
d

2a

)

is an algebraic integer of degree exactly h(d).

Proof. References to proofs can be found in [9]. Proofs are also found in [7] and
[2].

This makes finding values of the negative discriminant d such that h(d) =
1 i.e. negative discriminant of class number exactly one, extremely exciting
because then the coefficients a, b and c of the corresponding binary quadratic
form ax2 + bxy + cy2 will be such that

j

(
−b+

√
d

2a

)

will be an algebraic integer of degree 1, in other words an actual integer!
So how do we find all negative discriminants of class number 1?. Are there
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d BQF
−3 x2 + xy + y2

−7 x2 + xy + 2y2

−11 x2 + xy + 3y2

−19 x2 + xy + 4y2

−27 x2 + xy + 7y2

−43 x2 + xy + 11y2

−67 x2 + xy + 17y
−163 x2 + xy + 41y2

−4 x2 + y2

−8 x2 + 2y2

−12 x2 + 3y2

−16 x2 + 4y2

−28 x2 + 7y2

Table 1: Examples of primitive positive definite binary quadratic forms of dis-
criminants d with class number 1.

finitely or infinitely many? It turns out that they are finite in number and they
are:

d = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67 and − 163.

We give a table of quadratic forms of negative discriminants d whose class num-
ber is h(d) = 1: We see from the table that d = −163 is the largest discriminant
in absolute value. By the manner in which we have used the j−function pre-

viously to demonstrate that eπ
√
163 is extremely close to an integer we now

see that, by this method at least, we cannot find another value of the positive
integer n which makes eπ

√
n even closer to an integer,

4.4 Baker-Stark-Heegner Theorem

That there are finitely many negative discriminants of class number 1 was ini-
tially a conjecture of Gauss. It was first solved by Heegner, although it took a
while for the mathematical community to finally recognise his contribution. It
was later reproved by Stark and Baker.
It turns out that the most important discriminants of class number 1 to consider
are d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163. These are called the
fundamental discriminants of class number 1. We can state the Baker-Stark-
Heegner theorem (although in a slightly uncommon form) as

Theorem 4.4 (Baker-Stark-Heegner). There are exactly nine fundamental dis-
criminants d < 0 for which the class number h(d) is 1. They are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.

Theorem 4.5. References to several proofs can be found in [9].
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