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1. Introduction

A partial differential equation (PDE) is an equation involving an unknown function of several vari-

ables and its partial derivatives. PDEs arise naturally in the mathematical modeling of phenomena

in physics—for instance, in describing heat flow, wave propagation, or electrostatic potential.

A second-order linear PDE in two variables can typically be written in the form

A(x, y)
∂2u

∂x2
+ 2B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
+ lower-order terms = 0,

where A,B,C are given coefficient functions. The type of such a PDE is determined by the discrim-

inant D = B2 −AC. The equation is called

• elliptic if D < 0,

• parabolic if D = 0,

• hyperbolic if D > 0.

Elliptic PDEs describe steady-state or equilibrium configurations—such as the distribution of

electric potential in a region with no charge. Among these, the simplest and most fundamental

example is the Laplace equation.

This paper studies properties of solutions to the Laplace equation, especially in the context of the

Dirichlet boundary value problem. We explore the mean value property, the maximum principle,

and techniques for solving Laplace’s equation using the Poisson kernel and Green’s functions.

2. Laplace’s Equation

Definition 2.1 (Laplace Equation). A twice continuously differentiable function u(x, y) is said to

satisfy the Laplace equation in a domain Ω ⊂ R2 if

∂2u

∂x2
+
∂2u

∂y2
= 0 for all (x, y) ∈ Ω.

This is also sometimes written as ∇2u = 0 or ∆u = 0 (where ∆ is called the Laplacian). Such a

function u is called harmonic on Ω.

One way that this shows up in complex analysis is with the real and imaginary parts of holomor-

phic functions.

Date: June 9, 2025.

1



2 VEDANT VALLURI

Theorem 2.2. Let f(z) = u(x, y) + iv(x, y) be a holomorphic function on an open subset Ω ⊂ C ,

where z = x+ iy. Then both u and v are harmonic functions on Ω, that is, they satisfy the Laplace

equation: ∆u = 0, ∆v = 0.

Proof. Since f is holomorphic on Ω, it satisfies the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

The Laplacian of u is uxx + uyy = ∂
∂xux + ∂

∂yuy = ∂
∂xvy + ∂

∂y (−vx) = vyx − vxy = 0. Similarly,

for v we get vxx + vyy = ∂
∂xvx + ∂

∂yvy = ∂
∂x (−uy) +

∂
∂y (ux) = −uyx + uxy = 0. This means that

∆u = ∆v = 0.

□

The problem of solving this differential equation on a domain along with a specified function that

the solution should take on values of on the boundary, is called the Dirichlet problem.

Definition 2.3 (Dirichlet problem). The Dirichlet problem on an open set Ω of finding a function

u such that ∆u = 0 on Ω

u = f on ∂Ω

One of the most important properties that come from harmonic functions (and by extension

holomorphic functions in the complex plane) is the mean value property which says that a function

has the same value as the average of the points around it.

Theorem 2.4 (Mean value property). Let u ∈ C2Ω where ∆u = 0 and Br(x) ∈ Ω. Then,

u(x) =
1

An

∫
∂Br(x)

u dS

where An is the surface area of the n-sphere and S is the normal surface element.

Proof. Define the function

ϕ(r) =
rn−1

An

∫
∂B1(0)

u(x+ rω)dS0

where ω is a unit vector from 0 to a point on the unit ball. Then the derivative of ϕ by differentiating

under the integral sign is

ϕ′(r) =
rn−1

An

∫
∂B1(0)

∇u(x+ rω) · ω dS0

Recall Green’s first identity: ∫
U

(ψ∆φ+∇ψ · ∇φ) dV =

∫
∆U

ψ∇φ dS

By using this the above equation becomes

ϕ′(r) =
rn−1

An

∫
∂B1(0)

∇u(x+ rω) · ω dS0 =
rn−1

An

∫
B1(0)

∇ · ∇u(x+ rω)dV =
rn−1

An

∫
B1(0)

∆udV
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Since u is harmonic, ϕ′(r) = 0 meaning ϕ is constant. If we plug in r = 0 we get ϕ(0) = u(x).

Combining this with the previous fact ϕ(r) = ϕ(0) = u(x).

□

Corollary 2.4.1. Integrating the previous result from 0 to r gives

u(x) =
1

Vn

∫
Br(x)

u dV

From this, something called the maximum principle follows.

Theorem 2.5 (Maximum principle). Suppose u is harmonic on Ω, which is connected, and attains

a maximum in Ω, then u is constant on Ω.

Proof. Define the set X as the set of points x0 ∈ Ω such that u(x0) = M := supx∈Ω u(x). Then

X must be closed because it is the pre-image of a singleton set on a continuous function. We also

have another definition for X being open, which is that for every x0 ∈ X, there exists some δ > 0

such that Bδ(x0) ⊂ X. Take some radius r such that Br(x0) ∈ Ω. Then because u(x0) is the

maximum, 1
Vn

∫
Br(x0)

u dV ≤ u(x0). But we also know from the Mean Value Property that these

must be exactly equal. This means that u takes on the value M on the entirety of Br(x0). Meaning

Br(x0) ⊂ X. Taking δ < r, we get that X is open. Since X is clopen, it must be either Ω or the

empty set. □

3. The Poisson Kernel on a Disk

Let’s see how to solve the Dirichlet problem where Ω ∈ R2 is the unit disk with a boundary

condition u(cos(θ), sin(θ)) = f(θ) for some f . Since we are dealing with circles, it will be beneficial

to use polar coordinates. Say that u is a function of r, θ and the polar coordinate version of the

Laplacian is

0 = ∆u =
1

r

∂

∂r

[
r
∂u

∂r

]
+

1

r2
∂2u

∂θ2

We can perform a separation of variables with u(r, θ) = ρ(r)ϕ(θ). Plugging this back into the

equation and simplifying the derivatives we get

ϕ(θ)ρ′′(r) +
1

r
ϕ(θ)ρ′(r) +

1

r2
ϕ′′(θ)ρ(r) = 0

Multiplying both sides by r2

u and rewriting we will have

r2
ρ′′(r)

ρ(r)
+ r

ρ′(r)

ρ(r)
= −ϕ

′′(θ)

ϕ(θ)
= λ

which gives two easy to solve ODEs:

ϕ′′ + λϕ = 0

r2ρ′′ + rρ′ − λρ = 0
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To make sure that ϕ is 2π periodic we need that λ = n2 for some n ∈ N. Then we get the solution

ϕn(θ) = an cos(nθ) + bn sin(nθ). The general solution for the equation for ρ is

ρ(r) =

c1 + c2 log r, n = 0

c1r
n + c2r

−n, n > 0

Since we need the function to be continuous at 0 and not to blow up near there we will take c2 to

be 0. For the same reason, we can’t use the log for the n = 0 case. This means our final solution

will be

u(r, θ) = a0 +

∞∑
n=1

rn [an cos(nθ) + bn sin(nθ)]

If we plug in r = 1 we can see that we just get the Fourier series of the boundary function, so an

and bn must be said Fourier coefficients. We get the coefficients as

an =
1

π

∫ π

−π

f(t) cos(nt)dt

bn =
1

π

∫ π

−π

f(t) sin(nt)dt

We can rewrite the function as

u(r, θ) = a0 + ℜ
∞∑

n=1

rn(an − ibn)e
inθ = a0 + ℜ

∞∑
n=1

(an − ibn)z
n

where z = reiθ. This means that u(r, θ) is the real part of a holomorphic function on the unit

disk, which is consistent with the fact that real parts of holomorphic functions are harmonic.

We will then have

an − ibn =
1

π

∫ π

−π

f(t)e−intdt

and then write the function as

u(r, θ) = a0 +
1

π
ℜ

∞∑
n=1

∫ π

−π

f(t)rnein(θ−t)dt =
1

2π

∫ π

−π

f(t)ℜ

(
1 + 2

∞∑
n=1

rnein(θ−t)

)
dt

Definition 3.1. Define the Poisson kernel for the unit disk to be Pr(φ) = ℜ
(
1 + 2

∑∞
n=1 r

neinφ
)
.

We can evaluate this to be

ℜ

(
1 + 2

∞∑
n=1

rneinφ

)
= ℜ

(
1 + 2 · reiφ

1− reiφ

)
= ℜ

(
1 + reiφ

1− reiφ

)
=

1− r2

1− 2r cosφ+ r2

Finally, we have

u(r, θ) =
1

2π

∫ π

−π

f(t)Pr(θ − t)dt =
1

2π

∫ π

−π

(1− r2)f(t)

1− 2r cos(θ − t) + r2
dt

This is called the Poisson integral.
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4. The Dirichlet Problem with Conformal Maps

Let’s now consider the problem on the strip Ω = {x+ iy : x ∈ R, 0 < y < 1} where the boundary

is considered R and R + i with functions f0 and f1 such that u(x, 0) = f0(x), u(x, 1) = f1(x), and

both functions vanish at |x| → ∞. We can solve this by mapping this region to the unit disk and

using the Poisson kernel from before and then mapping it back. Consider the following two maps:

F : D → Ω

F (z) =
1

π
log

(
i
1− z

1 + z

)
and G : Ω → D

G(z) =
i− eπz

i+ eπz

Looking at the behavior of these maps we can see that if A = {eiθ, 0 < θ < π} we get that

F (A) = R and if B = {eiθ, π < θ < 2π} then F (B) = R + i. Let’s define the mapped boundary

functions f̃1(θ) = f1(F (e
iθ) − i) and f̃0(θ) = f0(F (e

iθ)). The reason we made f0, f1 vanish at the

∞s is so that f̃ would be continuous on ∂D. Now we can use the formula from before to get that

ũ(reiθ) =
1

2π

∫ π

−π

f̃(t)Pr(θ − t)dt =
1

2π

∫ 0

−π

f̃1(t)Pr(θ − t)dt+
1

2π

∫ π

0

f̃0(t)Pr(θ − t)dt

Now we can apply the G map to get our final solution which will be

u(z) = ũ(G(z))

The same thing can be done with any open set Ω if a suitable conformal map is found.

5. The Poisson Equation and Green’s Function

Next, we introduce a very similar PDE to the Laplace equation, which is the Poisson equation.

This is defined as

−∆u = f when x ∈ U

u = g when x ∈ ∂U

To solve these, we can introduce a technique called Green’s functions. Say that we have a linear

differential operator L (in this case it would be ∆) and a differential equation Lu = f . Then the

Green’s function G that satisfies

LG = δ

where δ is the Dirac delta function which is defined to be 0 on Rn \ {0} and
∫
Rn δ(x)dx = 1. Then,

u becomes u(x) =
∫
U
G(x, y)f(y) dy.

To solve the Poisson equation let’s look at the solution of an easier problem, namely

−∆Φ = δ
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where Φ is called the fundamental solution of the Laplacian. Then we can set u to be

u = (Φ ∗ f)(x) =
∫

Φ(x− y)f(y)dy

While the proof is more involved, we can see intuitively that ∆u = (−∆Φ) ∗ f = δ ∗ f = f . We can

try and find the function Φ. We can see that the δ function is radially symmetric so Φ must only

depend on r. This means we can set u(x) = φ(r) where r = |x|. Then the differential equation just

becomes, for x ̸= 0 for x ∈ Rn,

∆u =
1

rn−1

∂

∂r
(rn−1φ) = 0

This comes from the radial version of the Laplacian. Since φ is only dependent on r this is once

again a fairly easy ODE which has the solution

φ(r) =

a log r + b n = 2

a
rn−2 + b n ≥ 3

We must then choose suitable constants a and b such that−∆Φ = δ. This means that
∫
V
∆Φ(x)dV =

−1. Using Stokes’ Theorem, we get
∫
S
∇Φ · n̂ dS = −1. In the n ≥ 3 case this becomes a(2−n)r1−n ·

Snr
n−1 = −1 where Sn is the surface area of the n-unit-sphere so a = 1

(n−2)Sn
. In the n = 2 case

we get a
r · 2π = −1 so a = − 1

2π . This gives the fundamental solution as

Φ(r) =

− 1
2π log r n = 2

1
(n−2)Sn

· 1
rn−2 n ≥ 3

The issue with this right now, is that this only deals with the interior of U , and the boundary

condition of u = g on ∂U is not satisfied. Because of this, we define the Green’s function G(x, y) as

G(x, y) = Φ(x− y)− h(x, y)

where h(x, y) is the solution to the boundary problem∆xh(x, y) = 0 on U

h(x, y) = Φ(x− y) on ∆U

We do this because in the interior, ∆xh(x, y) will go to 0 meaning we get the correct behavior

from the Φ term. On the boundary, h and Φ will cancel each other out so when we take the integral

the solution on that region will be 0, allowing us to add back the correct boundary term. To finally

get u we recall Green’s second identity:∫
U

(u∆v − v∆u)dy =

∫
∂U

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS

We plug in G(x, y) as v and recall that ∆xG(x, y) = −δ(x− y) meaning that the lefthand side will

become

−u−
∫
U

G(x, y)f(y)dy
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and since u = g and G(x, y) = 0 on ∂U the right hand side will become∫
∂U

(
g
∂G

∂ν

)
dS

Simplifying, we get

u = −
∫
U

G(x, y)f(y)dy −
∫
∂U

(
g
∂G

∂ν

)
dS
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