
QUATERNIONIC ANALYSIS

SUNAY MIDUTHURI

Abstract. In this paper, we discuss the topic of Quaternionic Analysis, in which we at-
tempt to extend complex analysis to the quaternions.

1. Introduction

Quaternions are a four-dimensional algebra that extend the idea of a complex numbers
to create an entirely new number system. They were invented by the Irish mathematician
William Rowan Hamilton in [Ham66]. Much of the modern theory of Quaternionic Analysis
was developed by Fueter in [Fue35].

Definition 1.1. The set of quaternions, denoted H, is a 4-dimensional vector space over R
with basis 1, i, j, k, where i, j, k are the elementary quaternions.

Definition 1.2. The elementary quaternions satisfy

i2 = j2 = k2 = ijk = −1.

Furthermore, they are anticommutative, meaning that

ij = −ji.

From this, we trivially obtain the result of Theorem 1.3.

Theorem 1.3. The elementary quaternions satisfy

ij = k, jk = i, ki = j.

We are now ready to extend the elementary quaternions to the larger set of quaternions.

Definition 1.4. A quaternion can be represented as a linear combination in the form

q = w + xi+ yj + zk,

where x, y, z ∈ R.

Definition 1.5. The conjugate of a quaternion q = w + xi+ yj + zk is

q = w − xi− yj − zk.

Definition 1.6. The magnitude of a quaternion q = w + xi+ yj + zk is

|q| =
√

w2 + x2 + y2 + z2.

Definition 1.7. If q = t + xi + yj + zk ∈ H, then the real part Re(q) = t and the pure
quaternion part Pu(q) = xi+ yj + zk.
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The quaternions H form a 4-dimensional algebra over R. If q is any quaternion linearly
independent from 1, the vector subspace spanned by q and 1 is a subfield of H that is
isomorphic to C [Sud98]. We can also embed C in H; for instance, any quaternion q ∈ H
can be expressed in the form

q = v + jw,

where v, w ∈ C and j is an elementary quaternion.

2. Differential Forms

Definition 2.1. We define the differential of a function f : H → H as

df =
∂f

∂t
dt+

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

If this exists, we say that f is real-differentiable.

Definition 2.2. The differential of f : H → H at a point q is then defined analogously to
Definition 2.1 as a linear mapping dfq : H → H.

Definition 2.3. We also define the quaternion gradient operator as

□ =
∂

∂w
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Definition 2.4. Finally, we define the differential of the identity function

dq = dt+ i dx+ j dy + k dz.

3. Functions

Definition 3.1. A quaternion function f : H → H is quaternion-differentiable on the left at
a point q if

df

dq
= lim

h→0

f(q + h)− f(q)

h

exists as h → 0 from any direction in H.

Theorem 3.2. Suppose that a function f : H → H is defined and quaternion-differentiable
on the left throughout a connected open set U . Then on U , f has the form

f(q) = aq + b,

where a, b ∈ H.

Proof. [Sud98] If f is quaternion-differentiable on the left, we can write

dfq(h) = h
df

dq
= dq

df

dq
.
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We then equate coefficients of t, x, y, z to obtain

df

dq
=

∂f

∂t

= −i
∂f

∂x

= −j
∂f

∂y

= −k
∂f

∂z
.

Now suppose that q = v + jw, where v = t + ix and w = y − iz, and let f(q) = g(v, w) +
jh(v, w), where g and h are complex functions of v and w. We can then separate our the
previous equation into two sets of equations:

∂g

∂t
= −i

∂g

∂x
=

∂h

∂y
= i

∂h

∂z
,

and
∂h

∂t
= i

∂h

∂x
= −∂g

∂y
= i

∂g

∂z
.

We can write these in terms of complex derivatives as

∂g

∂v
=

∂h

∂w
=

∂h

∂v
=

∂g

∂w
= 0,

∂g

∂v
=

∂h

∂w
,

and
∂h

∂v
= − ∂g

∂w
.

Then, by Cauchy-Riemann, g is analytic in v and w, and h is analytic in v and w. Then

∂2g

∂v2
=

∂g

∂v

(
∂h

∂w

)
=

∂g

∂w

(
∂h

∂v

)
= 0,

from which we find that g is linear and the desired result follows. □

Definition 3.3. Conformal mappings in quaternionic analysis, as in complex analysis, are
those which preserve angles.

4. Regular Functions

Definition 4.1. We define the Left Cauchy-Riemann-Fueter equation of a function f : H →
H as

∂lf

∂q
=

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
.

Definition 4.2. Similarly, we define the Right Cauchy-Riemann-Fueter equation of a func-
tion f : H → H as

∂rf

∂q
=

∂f

∂t
+

∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k.
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Definition 4.3. A function f : H → H is left-regular or right regular if

∂lf

∂q
= 0

or
∂rf

∂q
= 0,

respectively.

If we write q = v + jw, the equations simplify to

∂g

∂v
=

∂h

∂w
,

∂g

∂w
= −∂h

∂v
.

Definition 4.4. A harmonic function f : H → H is one that satisfies

∂2f

∂t2
+

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0.

Definition 4.5. We define

Γr(df) =
∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
.

Theorem 4.6. The left differential ∂l can be written as

∂l(f) =
1

2
Γr(df).

Theorem 4.7. [Sud98] If f is a harmonic function, then

∂lf

is regular.

Theorem 4.8. [Sud98] Let u be a real-valued function defined on a star-shaped open set
U ⊆ H. If U is harmonic and has a continuous second derivative, there exists a regular
function f defined on U such that Re(f) = u.

5. Integrals

Definition 5.1. We define the 3-form

Dq(x, y, z)

to be the alternating trilinear form

⟨w,Dq(x, y, z)⟩ = v(w, x, y, z),

where the volume form
v = dt ∧ dx ∧ dy ∧ dz.

Geometrically, Dq(x, y, z) is the quaternion perpendicular to x, y, z with magnitude equal to
the volume of the parallelepiped given by x, y, z.

Theorem 5.2. [Sud98] Dq(a, b, c) = 1
2
(cab− bac).

Theorem 5.3. [Sud98] A differentiable function f is regular at q if and only if

Dq ∧ dfq = 0.
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From this result, we find that ∫
∂D

Dq f = 0

if f is regular and continuously differentiable on a set D.
We also obtain the Cauchy-Fueter Integral Formula:

Theorem 5.4. If f is regular on every point of a 4-parallelopiped C and q0 ∈ C,

f(q0) =
1

2π2

∫
∂C

(q − q0)
−1

|q − q0|2
Dqf(q).

Finally, we get to Cauchy’s theorem:

Theorem 5.5. Suppose f is regular in an open set U , and let C be a rectifiable 3-chain
which is homologous to 0 in the singular homology of U . Then∫

C

Dq f = 0.

We end with one application of quaternions to number theory.

6. Lagrange’s Four-Square Theorem

In this section, we examine Lagrange’s Four-Squares Theorem and its proof using quater-
nionic analysis. The theorem statement is as follows:

Conjecture 6.1 (Lagrange’s Four-Square Theorem). Every nonnegative integer p can be
written as

p = a2 + b2 + c2 + d2,

where a, b, c, and d are nonnegative integers.

To prove this, we’ll first need several definitions to develop the necessary theory.

Definition 6.2. A Lipschitz quaternion is a quaternion of the form

a+ bi+ cj + dk,

where a, b, c, d ∈ Z.

Definition 6.3. The Hurwitz Integers are the set of all quaternions with all-integer or all-
half-integer components; that is, any Hurwitz Integer h can be expressed in the form

h =
1

2
a(1 + i+ j + k) + bi+ cj + dk,

where a, b, c are all integers.

The following theorem then follows trivially.

Theorem 6.4. The sum of any two Hurwitz Integers is itself a Hurwitz integer.

Definition 6.5. A Hurwitz integer a is a multiple of a Hurwitz integer b if and only if there
is a Hurwitz integer c such that a = bc.
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Definition 6.6. [CW11] A Hurwitz Prime is a Hurwitz Integer which has no non-trivial
factors (that is, factors other than elementary quaternions and

±1

2
± 1

2
i± 1

2
j ± 1

2
k

).

From now on, we’ll refer to typical primes p ∈ Z as ”regular primes”, and Hurwitz Primes
as ”Hurwitz Primes” to clearly differentiate the two.

Lemma 6.7. [CW11] If positive integers p and q can be written as the sum of four squares,
so can their product.

Proof. Suppose that p = a2 + b2 + c2 + d2 and q = w2 + x2 + y2 + z2. Then, if

α = a+ bi+ cj + dk and β = w + xi+ yj + zk,

we know that p = ||α||2 and q = ||β||2, for some Lipschitz quaternions α and β. Then
uv = ||α2||| · |β||2 = ||αβ||2 = ||A||2 for some Lipschitz quaternion A, from which the desired
result follows. □

This means that it suffices to show the Lagrange Four-Square Theorem for all regular
primes. The following two lemmas from [CW11] are given without proof, as said proofs are
not particularly relevant to the Lagrange Four-Square Theorem.

Lemma 6.8. Let p be a Hurwitz prime. If

p|αβ,
either p|α or p|β.

Lemma 6.9. If p is an odd regular prime, there exist integers l and m such that

p|1 + l2 +m2.

Theorem 6.10. If p is an odd regular prime, it is not a Hurwitz Prime.

Proof. We’ll use contradiction. Suppose that p is a Hurwitz prime. Now, by Lemma 6.9,
there exist integers l and m such that

p|1 + l2 +m2.

But

(1 + li+mj)(1− li−mj) = (1 + (li+mj))(1− (li+mj))

= (1)2 − (li+mj)(li+mj)

= 1− (−l2 −m2 + li ·mj +mj · li)
= 1 + l2 +m2 − lm(i · j − j · i)
= 1 + l2 +m2.

Then, by Lemma 6.8, if p|1+ l2 +m2, we must have p|1+ li+mj or p|1− li−mj. But then

1

p
± li+mj

p

is a Hurwitz Integer, which is impossible, as p > 2. Therefore, p is not a Hurwitz Integer. □
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Theorem 6.11. Let p be a regular odd prime. Then p can be written as the sum of four
squares.

Proof. Since p is not a Hurwitz prime, it can be factored as

p = (a+ bi+ cj + dk)α.(6.1)

Then
p = p = α(a− bi− cj − dk).

Multiplying, we obtain

p2 = (a+ bi+ cj + dk)αα(a− bi− cj − dk) = (a2 + b2 + c2 + d2)||a||2.
Since p is not a Hurwitz prime, the original factorization in (1) is nontrivial; therefore, we
know that both parts of the factorization

p2 = (a2 + b2 + c2 + d2)||a||2

are equal to p. Then a2 + b2 + c2 + d2 = p, as desired. □

Finally, we are ready to prove Lagrange’s Four-Square Theorem.

Theorem 6.12 (Lagrange’s Four-Square Theorem). Every nonnegative integer n can be
written as

n = a2 + b2 + c2 + d2,

where a, b, c, and d are nonnegative integers.

Proof. We start with base cases. We have

1 = 02 + 02 + 02 + 12

and
2 = 12 + 12 + 02 + 02.

By Theorem 6.11, any odd regular prime can be expressed in this form as well. Let

n =
k∏

i=1

peii .

Since each of the pi can be written in the desired form, Lemma 6.7 produces the desired
result. □

References

[CW11] Erin Compaan and Cynthia Wu. On hurwitz and lipschitz quaternions and lagrange’s four-square
theorem. SPWM, 2011.

[Fue35] Rud Fueter. Uber die analytische darstellung der regularen funktionen einer quaternionenvariablen.
Commentarii Mathematici Helvetici, 1935.

[Ham66] William Roward Hamilton. Elements Of Quaternions. Longmans, Green, 1866.
[Sud98] Anthony Sudbery. Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical

Society, 85(2), 1998.


	1. Introduction
	2. Differential Forms
	3. Functions
	4. Regular Functions
	5. Integrals
	6. Lagrange's Four-Square Theorem
	References

