QUATERNIONIC ANALYSIS
SUNAY MIDUTHURI

ABSTRACT. In this paper, we discuss the topic of Quaternionic Analysis, in which we at-
tempt to extend complex analysis to the quaternions.

1. INTRODUCTION

Quaternions are a four-dimensional algebra that extend the idea of a complex numbers
to create an entirely new number system. They were invented by the Irish mathematician
William Rowan Hamilton in [Ham66]. Much of the modern theory of Quaternionic Analysis
was developed by Fueter in [Fue35].

Definition 1.1. The set of quaternions, denoted H, is a 4-dimensional vector space over R
with basis 1,1, j, k, where 7, j, k are the elementary quaternions.

Definition 1.2. The elementary quaternions satisfy
it =% =k*=ijk=—1.
Furthermore, they are anticommutative, meaning that
ij = —Jji.
From this, we trivially obtain the result of Theorem [1.3]
Theorem 1.3. The elementary quaternions satisfy
1] =k, ik =1,ki =j.
We are now ready to extend the elementary quaternions to the larger set of quaternions.
Definition 1.4. A quaternion can be represented as a linear combination in the form
qg=w+xi+1yj+ zk,
where z,y, 2z € R.
Definition 1.5. The conjugate of a quaternion ¢ = w + xi + yj + zk is
g=w—xt—yj — zk.

Definition 1.6. The magnitude of a quaternion ¢ = w + xi + yj + zk is

lal = Vw? + 2 +y? + 22

Definition 1.7. If ¢ = ¢t + xi + yj + 2k € H, then the real part Re(q) = ¢ and the pure

quaternion part Pu(q) = xi + yj + zk.
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The quaternions H form a 4-dimensional algebra over R. If ¢ is any quaternion linearly
independent from 1, the vector subspace spanned by ¢ and 1 is a subfield of H that is
isomorphic to C [Sud98|. We can also embed C in H; for instance, any quaternion ¢ € H
can be expressed in the form

q=v+jw,

where v, w € C and j is an elementary quaternion.

2. DIFFERENTIAL FORMS

Definition 2.1. We define the differential of a function f : H — H as

afdt+gd +gd L9

i = oz oy 0z

If this exists, we say that f is real-differentiable.

Definition 2.2. The differential of f : H — H at a point ¢ is then defined analogously to
Definition 2.1 as a linear mapping df, : H — H.

Definition 2.3. We also define the quaternion gradient operator as

0 3 3 0

Definition 2.4. Finally, we define the differential of the identity function

dg=dt+idx+jdy+kdz.

3. FUNCTIONS

Definition 3.1. A quaternion function f : H — H is quaternion-differentiable on the left at
a point ¢ if

df _ i flath) = fla)
dq h—0 h

exists as h — 0 from any direction in H.

Theorem 3.2. Suppose that a function f: H — H is defined and quaternion-differentiable
on the left throughout a connected open set U. Then on U, f has the form

fla) =aq+b,
where a,b € H.

Proof. [Sud9§| If f is quaternion-differentiable on the left, we can write

Y
dfq( ) hd_q _dqdq.
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We then equate coefficients of ¢, x,y, z to obtain

df  9of

dg ot
__;9f
ox
Of

_‘7(9_1/
of

= —k—.
0z

Now suppose that ¢ = v + jw, where v =t + iz and w = y — iz, and let f(q) = g(v,w) +
jh(v,w), where g and h are complex functions of v and w. We can then separate our the
previous equation into two sets of equations:

dg dg Oh  0h
—_— = = — = 2—7
ot Jdxr Oy 0z

and
Oh . Oh  9dg g
Tl 9, i,
We can write these in terms of complex derivatives as
dg Oh Oh 0g
g ow v dw

dg  Oh

o ow
and

oh  dg

o 0w

Then, by Cauchy-Riemann, ¢ is analytic in v and w, and h is analytic in ¥ and w. Then

0% _0g (Oh) _ 0g (Oh\ _
on? v \ow) ow\ow/)
from which we find that ¢ is linear and the desired result follows. 0

Definition 3.3. Conformal mappings in quaternionic analysis, as in complex analysis, are
those which preserve angles.

4. REGULAR FUNCTIONS

Definition 4.1. We define the Left Cauchy-Riemann-Fueter equation of a function f : H —

Hos 0 0 0 0 0
LS S .of Of /
—— == 4=+ j =+ k=
o ot lar Yoy Vo
Definition 4.2. Similarly, we define the Right Cauchy-Riemann-Fueter equation of a func-
tion f:H — H as
o.f _of Of. Of  of
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Definition 4.3. A function f : H — H is left-regular or right regular if
of

2
dq

or 5
Ly,
9q

respectively.

If we write ¢ = v + jw, the equations simplify to
dg Oh Jg oh
o ow ow  ov
Definition 4.4. A harmonic function f : H — H is one that satisfies

*f o 0*f 82f_i_azf_o
otz 0z Oy 022

Definition 4.5. We define

of of of of
ro(af) = 2 420 4 ;00 9
) =5 Tigs T, T s

Theorem 4.6. The left differential 0, can be written as

1

af) = 5Tva).

Theorem 4.7. [Sud98] If f is a harmonic function, then
of

15 reqular.

Theorem 4.8. [Sud98] Let u be a real-valued function defined on a star-shaped open set
U C H. If U is harmonic and has a continuous second derivative, there exists a regular

function f defined on U such that Re(f) = u.
5. INTEGRALS
Definition 5.1. We define the 3-form
Dq(z,y, 2)
to be the alternating trilinear form
(w, Dg(2,y,2)) = v(w,2,y, 2),

where the volume form
v=dt Ndx Ndy N dz.

Geometrically, Dq(z,y, z) is the quaternion perpendicular to z,y, z with magnitude equal to
the volume of the parallelepiped given by x, vy, 2.

Theorem 5.2. [Sud98] Dq(a,b,c) = 5(cab — bac).
Theorem 5.3. [Sud98] A differentiable function f is reqular at q if and only if
Dq N df, = 0.
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From this result, we find that
Dq f=0
oD

if f is regular and continuously differentiable on a set D.
We also obtain the Cauchy-Fueter Integral Formula:

Theorem 5.4. If f is reqular on every point of a 4-parallelopiped C' and qo € C,

Flao) = 1t4091329—:Dqﬂq)

- 2n? |4 — qo0l?
Finally, we get to Cauchy’s theorem:

Theorem 5.5. Suppose f is reqular in an open set U, and let C' be a rectifiable 3-chain
which s homologous to 0 in the singular homology of U. Then

/Cqu:o.

We end with one application of quaternions to number theory.

6. LAGRANGE’S FOUR-SQUARE THEOREM

In this section, we examine Lagrange’s Four-Squares Theorem and its proof using quater-
nionic analysis. The theorem statement is as follows:

Conjecture 6.1 (Lagrange’s Four-Square Theorem). Every nonnegative integer p can be
written as

p=a’>+b*+c+d%
where a, b, c, and d are nonnegative integers.
To prove this, we’ll first need several definitions to develop the necessary theory.
Definition 6.2. A Lipschitz quaternion is a quaternion of the form
a+bi+cj+dk,
where a, b, c,d € Z.

Definition 6.3. The Hurwitz Integers are the set of all quaternions with all-integer or all-
half-integer components; that is, any Hurwitz Integer h can be expressed in the form

1
h = 5a(1+z'+j+l<;)+ln'+cj+dl~c,
where a, b, c are all integers.
The following theorem then follows trivially.

Theorem 6.4. The sum of any two Hurwitz Integers is itself a Hurwitz integer.

Definition 6.5. A Hurwitz integer a is a multiple of a Hurwitz integer b if and only if there
is a Hurwitz integer ¢ such that a = bc.
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Definition 6.6. [CW11] A Hurwitz Prime is a Hurwitz Integer which has no non-trivial
factors (that is, factors other than elementary quaternions and

r 1. . 1. 1
+—+ -1+ -5+ =k
2 2 2 2

From now on, we’ll refer to typical primes p € Z as "regular primes”, and Hurwitz Primes
as "Hurwitz Primes” to clearly differentiate the two.

Lemma 6.7. [CW11] If positive integers p and q can be written as the sum of four squares,
so can their product.

Proof. Suppose that p = a? + b* 4 ¢ + d? and ¢ = w? + 2% + y? + 22. Then, if
a=a+bi+cj+dkand 8 =w+ zi+yj + 2k,

we know that p = ||a||* and ¢ = [|B]|?, for some Lipschitz quaternions « and 3. Then
uv = [|?|]]|8]]* = ||aB]||* = ||A||* for some Lipschitz quaternion A, from which the desired
result follows. O

This means that it suffices to show the Lagrange Four-Square Theorem for all regular
primes. The following two lemmas from |[CW11] are given without proof, as said proofs are
not particularly relevant to the Lagrange Four-Square Theorem.

Lemma 6.8. Let p be a Hurwitz prime. If
plag,
either pla or p|S.
Lemma 6.9. If p is an odd regular prime, there exist integers | and m such that
p|1 4 I +m?
Theorem 6.10. If p is an odd reqular prime, it is not a Hurwitz Prime.

Proof. We'll use contradiction. Suppose that p is a Hurwitz prime. Now, by Lemma [6.9)
there exist integers [ and m such that

p|1+ 1% 4+ m?
But
(1+li+mj)(1—1i —my)= 1+ (li +my))(1 — (It + my))
= (1) — (li +mj)(li +my)
=1— (=P —m*+1li-mj+mj-li)
=1+P4+m?>—Im(i-j—7-1)
=1+1+m?
Then, by Lemmal6.8] if p|1 + (2 + m?, we must have p|1 + li +mj or p|1 — i —mj. But then
1 li+my

- x
p p

is a Hurwitz Integer, which is impossible, as p > 2. Therefore, p is not a Hurwitz Integer. [
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Theorem 6.11. Let p be a reqular odd prime. Then p can be written as the sum of four
squares.

Proof. Since p is not a Hurwitz prime, it can be factored as
(6.1) p=(a+bi+cj+dk)o.
Then
p=p=ala—bi—cj—dk).
Multiplying, we obtain
p> = (a+bi+cj+dk)aala —bi —cj —dk) = (a* +b* + * + d?)||al|?.
Since p is not a Hurwitz prime, the original factorization in (1) is nontrivial; therefore, we
know that both parts of the factorization

p* = (a* + "+ + d”)[al]”
are equal to p. Then a? + b? + ¢® + d? = p, as desired. O

Finally, we are ready to prove Lagrange’s Four-Square Theorem.

Theorem 6.12 (Lagrange’s Four-Square Theorem). FEvery nonnegative integer n can be
written as

n=a>+b+c*+d
where a, b, c, and d are nonnegative integers.

Proof. We start with base cases. We have
1=0"40>+0%+1°
and
2=1"+1*+0%+ 0%
By Theorem [6.11} any odd regular prime can be expressed in this form as well. Let

k

e

n = Hp/.
i=1

Since each of the p; can be written in the desired form, Lemma produces the desired
result. 0
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