QUATERNIONIC ANALYSIS

SUNAY MIDUTHURI

ABSTRACT. In this paper, we discuss the topic of Quaternionic Analysis, in which we attempt to extend complex analysis to the quaternions.

1. Introduction

Quaternions are a four-dimensional algebra that extend the idea of a complex numbers to create an entirely new number system. They were invented by the Irish mathematician William Rowan Hamilton in [Ham66]. Much of the modern theory of Quaternionic Analysis was developed by Fueter in [Fue35].

Definition 1.1. The set of quaternions, denoted \mathbb{H} , is a 4-dimensional vector space over \mathbb{R} with basis 1, i, j, k, where i, j, k are the elementary quaternions.

Definition 1.2. The elementary quaternions satisfy

$$i^2 = j^2 = k^2 = ijk = -1.$$

Furthermore, they are anticommutative, meaning that

$$ij = -ji$$
.

From this, we trivially obtain the result of Theorem 1.3.

Theorem 1.3. The elementary quaternions satisfy

$$ij = k, jk = i, ki = j.$$

We are now ready to extend the elementary quaternions to the larger set of quaternions.

Definition 1.4. A quaternion can be represented as a linear combination in the form

$$q = w + xi + yj + zk,$$

where $x, y, z \in \mathbb{R}$.

Definition 1.5. The conjugate of a quaternion q = w + xi + yj + zk is

$$\overline{q} = w - xi - yj - zk.$$

Definition 1.6. The magnitude of a quaternion q = w + xi + yj + zk is

$$|q| = \sqrt{w^2 + x^2 + y^2 + z^2}.$$

Definition 1.7. If $q = t + xi + yj + zk \in H$, then the real part Re(q) = t and the pure quaternion part Pu(q) = xi + yj + zk.

The quaternions \mathbb{H} form a 4-dimensional algebra over \mathbb{R} . If q is any quaternion linearly independent from 1, the vector subspace spanned by q and 1 is a subfield of \mathbb{H} that is isomorphic to \mathbb{C} [Sud98]. We can also embed \mathbb{C} in \mathbb{H} ; for instance, any quaternion $q \in \mathbb{H}$ can be expressed in the form

$$q = v + jw$$

where $v, w \in \mathbb{C}$ and j is an elementary quaternion.

2. Differential Forms

Definition 2.1. We define the differential of a function $f: \mathbb{H} \to \mathbb{H}$ as

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz.$$

If this exists, we say that f is real-differentiable.

Definition 2.2. The differential of $f: \mathbb{H} \to \mathbb{H}$ at a point q is then defined analogously to Definition 2.1 as a linear mapping $df_q: \mathbb{H} \to \mathbb{H}$.

Definition 2.3. We also define the quaternion gradient operator as

$$\Box = \frac{\partial}{\partial w} + i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}.$$

Definition 2.4. Finally, we define the differential of the identity function

$$dq = dt + i dx + j dy + k dz.$$

3. Functions

Definition 3.1. A quaternion function $f : \mathbb{H} \to \mathbb{H}$ is quaternion-differentiable on the left at a point q if

$$\frac{df}{dq} = \lim_{h \to 0} \frac{f(q+h) - f(q)}{h}$$

exists as $h \to 0$ from any direction in \mathbb{H} .

Theorem 3.2. Suppose that a function $f : \mathbb{H} \to \mathbb{H}$ is defined and quaternion-differentiable on the left throughout a connected open set U. Then on U, f has the form

$$f(q) = aq + b,$$

where $a, b \in \mathbb{H}$.

Proof. [Sud98] If f is quaternion-differentiable on the left, we can write

$$df_q(h) = h\frac{df}{dq} = dq\frac{df}{dq}.$$

We then equate coefficients of t, x, y, z to obtain

$$\begin{split} \frac{df}{dq} &= \frac{\partial f}{\partial t} \\ &= -i \frac{\partial f}{\partial x} \\ &= -j \frac{\partial f}{\partial y} \\ &= -k \frac{\partial f}{\partial z}. \end{split}$$

Now suppose that q = v + jw, where v = t + ix and w = y - iz, and let f(q) = g(v, w) + jh(v, w), where g and h are complex functions of v and w. We can then separate our the previous equation into two sets of equations:

$$\frac{\partial g}{\partial t} = -i\frac{\partial g}{\partial x} = \frac{\partial h}{\partial y} = i\frac{\partial h}{\partial z},$$

and

$$\frac{\partial h}{\partial t} = i \frac{\partial h}{\partial x} = - \frac{\partial g}{\partial y} = i \frac{\partial g}{\partial z}.$$

We can write these in terms of complex derivatives as

$$\frac{\partial g}{\partial \overline{v}} = \frac{\partial h}{\partial \overline{w}} = \frac{\partial h}{\partial v} = \frac{\partial g}{\partial w} = 0,$$
$$\frac{\partial g}{\partial v} = \frac{\partial h}{\partial w},$$

and

$$\frac{\partial h}{\partial \overline{v}} = -\frac{\partial g}{\partial \overline{w}}.$$

Then, by Cauchy-Riemann, g is analytic in v and \overline{w} , and h is analytic in \overline{v} and w. Then

$$\frac{\partial^2 g}{\partial v^2} = \frac{\partial g}{\partial v} \left(\frac{\partial h}{\partial w} \right) = \frac{\partial g}{\partial w} \left(\frac{\partial h}{\partial v} \right) = 0,$$

from which we find that g is linear and the desired result follows.

Definition 3.3. Conformal mappings in quaternionic analysis, as in complex analysis, are those which preserve angles.

4. Regular Functions

Definition 4.1. We define the Left Cauchy-Riemann-Fueter equation of a function $f : \mathbb{H} \to \mathbb{H}$ as

$$\frac{\partial_l f}{\partial \overline{a}} = \frac{\partial f}{\partial t} + i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} + k \frac{\partial f}{\partial z}.$$

Definition 4.2. Similarly, we define the Right Cauchy-Riemann-Fueter equation of a function $f: \mathbb{H} \to \mathbb{H}$ as

$$\frac{\partial_r f}{\partial \overline{q}} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k.$$

Definition 4.3. A function $f: \mathbb{H} \to \mathbb{H}$ is left-regular or right regular if

$$\frac{\partial_l f}{\partial \overline{q}} = 0$$

or

$$\frac{\partial_r f}{\partial \overline{a}} = 0,$$

respectively.

If we write q = v + jw, the equations simplify to

$$\frac{\partial g}{\partial \overline{v}} = \frac{\partial h}{\partial \overline{w}}, \quad \frac{\partial g}{\partial w} = -\frac{\partial h}{\partial v}.$$

Definition 4.4. A harmonic function $f: \mathbb{H} \to \mathbb{H}$ is one that satisfies

$$\frac{\partial^2 f}{\partial t^2} + \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

Definition 4.5. We define

$$\Gamma_r(df) = \frac{\partial f}{\partial t} + i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} + k \frac{\partial f}{\partial z}.$$

Theorem 4.6. The left differential ∂_l can be written as

$$\partial_l(f) = \frac{1}{2}\overline{\Gamma}_r(df).$$

Theorem 4.7. [Sud98] If f is a harmonic function, then

$$\partial_l f$$

is regular.

Theorem 4.8. [Sud98] Let u be a real-valued function defined on a star-shaped open set $U \subseteq \mathbb{H}$. If U is harmonic and has a continuous second derivative, there exists a regular function f defined on U such that Re(f) = u.

5. Integrals

Definition 5.1. We define the 3-form

to be the alternating trilinear form

$$\langle w, Dq(x, y, z) \rangle = v(w, x, y, z),$$

where the volume form

$$v = dt \wedge dx \wedge dy \wedge dz$$
.

Geometrically, Dq(x, y, z) is the quaternion perpendicular to x, y, z with magnitude equal to the volume of the parallelepiped given by x, y, z.

Theorem 5.2. [Sud98] $Dq(a,b,c) = \frac{1}{2}(c\overline{a}b - b\overline{a}c)$.

Theorem 5.3. [Sud98] A differentiable function f is regular at q if and only if

$$Dq \wedge df_q = 0.$$

From this result, we find that

$$\int_{\partial D} Dq \ f = 0$$

if f is regular and continuously differentiable on a set D. We also obtain the Cauchy-Fueter Integral Formula:

Theorem 5.4. If f is regular on every point of a 4-parallelopiped C and $q_0 \in C$,

$$f(q_0) = \frac{1}{2\pi^2} \int_{\partial C} \frac{(q - q_0)^{-1}}{|q - q_0|^2} Dq f(q).$$

Finally, we get to Cauchy's theorem:

Theorem 5.5. Suppose f is regular in an open set U, and let C be a rectifiable 3-chain which is homologous to 0 in the singular homology of U. Then

$$\int_C Dq \ f = 0.$$

We end with one application of quaternions to number theory.

6. Lagrange's Four-Square Theorem

In this section, we examine Lagrange's Four-Squares Theorem and its proof using quaternionic analysis. The theorem statement is as follows:

Conjecture 6.1 (Lagrange's Four-Square Theorem). Every nonnegative integer p can be written as

$$p = a^2 + b^2 + c^2 + d^2,$$

where a, b, c, and d are nonnegative integers.

To prove this, we'll first need several definitions to develop the necessary theory.

Definition 6.2. A Lipschitz quaternion is a quaternion of the form

$$a + bi + cj + dk$$

where $a, b, c, d \in \mathbb{Z}$.

Definition 6.3. The Hurwitz Integers are the set of all quaternions with all-integer or all-half-integer components; that is, any Hurwitz Integer h can be expressed in the form

$$h = \frac{1}{2}a(1+i+j+k) + bi + cj + dk,$$

where a, b, c are all integers.

The following theorem then follows trivially.

Theorem 6.4. The sum of any two Hurwitz Integers is itself a Hurwitz integer.

Definition 6.5. A Hurwitz integer a is a multiple of a Hurwitz integer b if and only if there is a Hurwitz integer c such that a = bc.

Definition 6.6. [CW11] A Hurwitz Prime is a Hurwitz Integer which has no non-trivial factors (that is, factors other than elementary quaternions and

$$\pm \frac{1}{2} \pm \frac{1}{2}i \pm \frac{1}{2}j \pm \frac{1}{2}k$$

).

From now on, we'll refer to typical primes $p \in Z$ as "regular primes", and Hurwitz Primes as "Hurwitz Primes" to clearly differentiate the two.

Lemma 6.7. [CW11] If positive integers p and q can be written as the sum of four squares, so can their product.

Proof. Suppose that
$$p = a^2 + b^2 + c^2 + d^2$$
 and $q = w^2 + x^2 + y^2 + z^2$. Then, if $\alpha = a + bi + cj + dk$ and $\beta = w + xi + yj + zk$,

we know that $p = ||\alpha||^2$ and $q = ||\beta||^2$, for some Lipschitz quaternions α and β . Then $uv = ||\alpha^2||| \cdot |\beta||^2 = ||\alpha\beta||^2 = ||A||^2$ for some Lipschitz quaternion A, from which the desired result follows.

This means that it suffices to show the Lagrange Four-Square Theorem for all regular primes. The following two lemmas from [CW11] are given without proof, as said proofs are not particularly relevant to the Lagrange Four-Square Theorem.

Lemma 6.8. Let p be a Hurwitz prime. If

$$p|\alpha\beta$$
,

either $p|\alpha$ or $p|\beta$.

Lemma 6.9. If p is an odd regular prime, there exist integers l and m such that

$$p|1 + l^2 + m^2$$
.

Theorem 6.10. If p is an odd regular prime, it is not a Hurwitz Prime.

Proof. We'll use contradiction. Suppose that p is a Hurwitz prime. Now, by Lemma 6.9, there exist integers l and m such that

$$p|1 + l^2 + m^2.$$

But

$$(1+li+mj)(1-li-mj) = (1+(li+mj))(1-(li+mj))$$

$$= (1)^2 - (li+mj)(li+mj)$$

$$= 1 - (-l^2 - m^2 + li \cdot mj + mj \cdot li)$$

$$= 1 + l^2 + m^2 - lm(i \cdot j - j \cdot i)$$

$$= 1 + l^2 + m^2.$$

Then, by Lemma 6.8, if $p|1+l^2+m^2$, we must have p|1+li+mj or p|1-li-mj. But then

$$\frac{1}{p} \pm \frac{li + mj}{p}$$

is a Hurwitz Integer, which is impossible, as p>2. Therefore, p is not a Hurwitz Integer. \square

Theorem 6.11. Let p be a regular odd prime. Then p can be written as the sum of four squares.

Proof. Since p is not a Hurwitz prime, it can be factored as

$$(6.1) p = (a+bi+cj+dk)\alpha.$$

Then

$$\overline{p} = p = \overline{\alpha}(a - bi - cj - dk).$$

Multiplying, we obtain

$$p^{2} = (a + bi + cj + dk)\alpha \overline{\alpha}(a - bi - cj - dk) = (a^{2} + b^{2} + c^{2} + d^{2})||a||^{2}.$$

Since p is not a Hurwitz prime, the original factorization in (1) is nontrivial; therefore, we know that both parts of the factorization

$$p^2 = (a^2 + b^2 + c^2 + d^2)||a||^2$$

are equal to p. Then $a^2 + b^2 + c^2 + d^2 = p$, as desired.

Finally, we are ready to prove Lagrange's Four-Square Theorem.

Theorem 6.12 (Lagrange's Four-Square Theorem). Every nonnegative integer n can be written as

$$n = a^2 + b^2 + c^2 + d^2,$$

where a, b, c, and d are nonnegative integers.

Proof. We start with base cases. We have

$$1 = 0^2 + 0^2 + 0^2 + 1^2$$

and

$$2 = 1^2 + 1^2 + 0^2 + 0^2.$$

By Theorem 6.11, any odd regular prime can be expressed in this form as well. Let

$$n = \prod_{i=1}^{k} p_i^{e_i}.$$

Since each of the p_i can be written in the desired form, Lemma 6.7 produces the desired result.

References

- [CW11] Erin Compaan and Cynthia Wu. On hurwitz and lipschitz quaternions and lagrange's four-square theorem. SPWM, 2011.
- [Fue35] Rud Fueter. Uber die analytische darstellung der regularen funktionen einer quaternionenvariablen. Commentarii Mathematici Helvetici, 1935.
- [Ham66] William Roward Hamilton. Elements Of Quaternions. Longmans, Green, 1866.
- [Sud98] Anthony Sudbery. Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society, 85(2), 1998.