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Abstract

At some point in the study of mathematics, one encounters the limita-
tions of the real number line and must transition into the complex plane.
Unlike the real plane, the complex plane exhibits surprising geometric
behavior. This paper explores the geometric properties of holomorphic
functions on the complex plane through several classical theorems, such
as Bloch’s Theorem, Landau’s Theorem, Koebe’s Theorem, and Picard’s
Little Theorem. Though these results are well-known, they reveal a rigid-
ity in how holomorphic maps distort and cover regions of the complex
plane. By first proving Bloch’s Theorem in detail, we use it as a founda-
tion to derive Landau’s Theorem and discuss how extremal length provides
a powerful lens for understanding Koebe’s Theorem. Then, we will pro-
vide an interesting proof of Picard’s Little Theorem. The paper concludes
with an original investigation into how these theorems may be leveraged
to explore a new problem in geometric function theory.

1 Bloch’s Theorem

Let D denote the open unit disc in C and D its closure. Let O(D) be the set of
all functions holomorphic in D. We aim to establish the following classical result
concerning the size of the image domains under certain normalized holomorphic
maps:

Theorem 1.1 (Bloch’s Theorem). Let f ∈ O(D) with f ′(0) = 1. Then the
image f(D) contains a disc of radius at least 3

2 −
√
2 > 1

12 .

This result lies in understanding the local behavior of holomorphic maps
and estimating how large a disc they must necessarily map onto, provided a
normalized derivative at the origin.

Let G ⊂ C be a domain, and suppose f ∈ O(G) is nonconstant. By the
Open Mapping Theorem, f(G) is a domain and thus open. The following lemma
controls the size of discs in the image:

Lemma 1.2. Let G be bounded, f ∈ C(G) ∩ O(G), and suppose f(∂G) ⊂ C.
Let s := minz∈∂G |f(z) − f(a)| for some a ∈ G. Then f(G) contains the open
disc Bs(f(a)), where Bs is the open disk of radius s
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Proof. Since f(∂G) is compact and does not include f(a), there exists a mini-
mum s > 0 for |f(z)− f(a)| as z ∈ ∂G. By continuity of f on G and holomor-
phicity on G, the open mapping theorem ensures that f(G) is open and hence
contains the full open disc about f(a) of radius s.

To apply this lemma, we require an estimate on the derivative of a holomor-
phic function. This is provided by the following:

Lemma 1.3. Let f ∈ O(V ) be nonconstant and satisfy |f ′(w)| ≤ 2|f ′(a)| for
all w ∈ V := Br(a). Then BR(f(a)) ⊂ f(V ), where

R :=
(
3− 2

√
2
)
r|f ′(a)|.

Proof. Without loss of generality, assume a = 0 and f(0) = 0. Let A(z) :=∫ z

0
[f ′(z)− f ′(0)] dz. Note that |A(z)| ≤ |z| · sup|t|≤|z| |f ′(t) − f ′(0)|. Using

Cauchy’s integral formula on f ′ and bounding the Cauchy kernel and f ′′ esti-
mates, we eventually see that:

|A(z)| ≤ |z|2

r − |z|
· |f ′(0)|.

and, by triangle inequality,

|f(z)| ≥ |z||f ′(0)| − |A(z)| ≥ |z|
(
1− |z|

r − |z|

)
|f ′(0)| =

(
r − 2|z|
r − |z|

)
|z||f ′(0)|.

Setting |z| = ρr and optimizing over ρ ∈ (0, 1) gives the boundR =
(
3− 2

√
2
)
r|f ′(0)|.

Hence BR(f(0)) ⊂ f(Br(0)).

Now let us deduce the main theorem from this.

Proof. Suppose f ∈ O(D) with f ′(0) = 1. Define the auxiliary function j(z) =
z−w
1−wz for a fixed w ∈ D, and consider the family

F := {h = f ◦ j : j ∈ Aut(D)} ,

where Aut(D) denotes the automorphism group of the disc. We define the
extremal function F (z) by

F (z) :=
z − q

qz − 1
so that F (0) = f(q), |F ′(0)| = max

j∈Aut(D)
|(f ◦ j)′(0)| =: N.

The estimate is then:

|F ′(z)| ≤ N

(1− |z|2)2
.

Using Lemma 2 on F , we find that

B(3−2
√
2)N (F (0)) ⊂ F (D) = f(D).
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Since N = supz∈D |f ′(z)|(1 − |z|2) is bounded for holomorphic f on D, this

implies that f(D) contains a disc of radius at least (3− 2
√
2)N . Taking f with

f ′(0) = 1, it follows that N ≥ 1
2 , giving

(3− 2
√
2)N ≥ (3− 2

√
2) · 1

2
>

1

12
,

which completes the proof.

2 Landau’s Theorem Via Bloch’s

Theorem 2.1 (Landau’s Theorem). Let f(z) be a function that is holomorphic
on D and is defined f : D → C. If f(0) = 0 and |f ′(0)| = 1, then we find that
f(D) contains a disk of at least radius L, where L is the Landau’s constant.

Proof. It is quite easy to see that Bloch’s theorem is a stronger condition of the
Landau’s theorem. In particular, it doesn’t require a zero at z = 0.

The harder part is finding what L should be. It is quite obvious that L ≥ B
because of the weaker conditions (and thus stronger results) for Bloch’s theorem.

3 Koebe’s Theorem Via Extremal Length

While Bloch’s and Landau’s Theorems provide lower bounds on the size of
discs contained in the image of holomorphic maps, Koebe’s Theorem addresses
a complementary question: how large the image of the unit disc can become
under univalent holomorphic functions.

Theorem 3.1 (Koebe’s Theorem). Let f : D → C be an injective and holo-
morphic function with f(0) = 0 and f ′(0) = 1. Then:

f(D) ⊃ D
(
0, 1

4

)
,

i.e., the image of the unit disk under f contains the disk of radius 1
4 centered

at the origin.

We will first prove this theorem using the concept of extremal length.

Definition 3.1 (Extremal Length). Formally, for a family of curves of finite
length Γ in a domain D ⊂ C, the extremal length λ(Γ) is defined as

λ(Γ) = sup
ρ

Lρ(Γ)
2

Aρ(D)
,

where:

• ρ : D → [0,∞) is a measurable function,

• Lρ(Γ) = infγ∈Γ

∫
γ
ρ(z)|dz| is the infimum of the ρ-lengths of curves in Γ,
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• Aρ(D) =
∫
D
ρ(z)2 dxdy is the ρ-area of D.

Extremal length is a conformal invariant that measures the “thickness”
of a family of curves. It is invariant under conformal maps, meaning that if
f : D → D′ is conformal and Γ is a family of curves in D, then

λ(f(Γ)) = λ(Γ).

Lemma 3.2 (Series Law). Let Γ1 and Γ2 be two path families in a domain D.
If Γ1 and Γ2 are separated (meaning there exist disjoint open sets U1, U2 such
that all paths in Γ1 are contained in U1 and all paths in Γ2 are contained in
U2), then

L(Γ1 + Γ2) ≥ L(Γ1) + L(Γ2)

where L(Γ) denotes the extremal length of the path family Γ, and Γ1 + Γ2

denotes the union of the path families.

Example. Extremal Length of an Annulus: Consider an annulus A = {z ∈ C :
r1 < |z| < r2}, where 0 < r1 < r2. We are interested in the extremal length of
the family of curves Γ that connect the inner boundary circle C1 = {z : |z| = r1}
to the outer boundary circle C2 = {z : |z| = r2}.

The extremal length L(Γ) of such a family of curves is given by

L(Γ) = 1

2π
log

(
r2
r1

)
To understand this, let’s briefly consider the definition of extremal length. For
a family of curves Γ, its extremal length L(Γ) is defined as

L(Γ) = sup
ρ

(
infγ∈Γ

∫
γ
ρ |dz|

)2∫∫
D
ρ2 dx dy

where the supremum is taken over all non-negative, measurable functions ρ :
D → [0,∞) (called metrics), and D is the domain containing the curves.

For the annulus example, the optimal metric ρ is known to be proportional
to 1/|z|. Specifically, we can choose ρ(z) = 1

|z| .

Let us calculate the numerator and denominator. The length of a curve γ
connecting C1 to C2 using this metric ρ is∫

γ

ρ |dz| =
∫
γ

1

|z|
|dz|

If we consider a radial line segment from r1 to r2, the integral becomes
∫ r2
r1

1
r dr =

log(r2) − log(r1) = log
(

r2
r1

)
. This value is the infimum for this specific family

of curves.
The integral of ρ2 over the annulus is∫∫

A

ρ2 dx dy =

∫∫
A

1

|z|2
dx dy
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Switching to polar coordinates (x = r cos θ, y = r sin θ, dx dy = r dr dθ), we get∫ 2π

0

∫ r2

r1

1

r2
r dr dθ =

∫ 2π

0

∫ r2

r1

1

r
dr dθ

=

∫ 2π

0

[log r]
r2
r1

dθ =

∫ 2π

0

(log r2 − log r1) dθ

=

∫ 2π

0

log

(
r2
r1

)
dθ = 2π log

(
r2
r1

)
Plugging these into the formula for extremal length:

L(Γ) =

(
log
(

r2
r1

))2
2π log

(
r2
r1

) =
1

2π
log

(
r2
r1

)

This shows how extremal length quantifies the ”conformal modulus” of the an-
nulus, which is invariant under conformal mappings.

Now that we have discussed extremal length, let us begin the proof of Koebe’s
Theorem.

We begin by contradiction. Suppose that f : D → C is univalent with
f(0) = 0 and f ′(0) = 1, and that the image f(D) does not contain the point
w = 1

4 . We define a function g(z) := (1 + δ)f(z) for some small δ > 0, so that
g(0) = 0 and g′(0) > 1.

Assume w /∈ g(D) and define the Koebe function:

K(z) =
z

(1− z)2
,

which maps D onto C \ (−∞,− 1
4 ].

Let us consider a double branched covering of the Riemann sphere Ĉ byK(z)
with critical points at ±1 and critical values K(1) = ∞, K(−1) = − 1

4 . Then
K
(
1
2

)
= 1, and the deck transformation z 7→ 1

z preserves K(z) up to rotation.
We can assume that g(D) avoids − 1

4 , so K−1(g(D)) avoids ±1.

Now consider the lifts g0, g∞ : D → Ĉ such that K ◦ gj = g for j = 0,∞,
with the relation g∞ = 1/g0. The images gj(D) are disjoint and avoid ±1.

For small ϵ > 0, and sufficiently small r > 0, we can show that:

g(D(0, r)) ⊂ D (0, r(1− ϵ)|g′(0)|) .

Thus, the image g∞(D(0, r)) lies in the annulus{
z ∈ C : |z| > 1

r(1− ϵ)|g′(0)|

}
.

Now define three annuli:

A := A

(
r(1− ϵ)|g′(0)|, 1

r(1− ϵ)|g′(0)|

)
, A0 := g0(A(r, 1)), A∞ := g∞(A(r, 1)).
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These annuli are homotopic since they each separate 0 from ∞, so we may
compare their extremal lengths.

Using the fact that the modulus of an annulus A(r1, r2) is:

mod(A(r1, r2)) =
1

2π
log

(
r2
r1

)
,

we compute:

mod(A0) = mod(A∞) =
1

2π
log

(
1

r

)
, mod(A) =

1

2π
log

(
1

r2(1− ϵ)2|g′(0)|2

)
.

By the series law for extremal length, discussed above, we have:

mod(A0) + mod(A∞) ≤ mod(A).

Substituting in, we get:

2

2π
log

(
1

r

)
≤ 1

2π
log

(
1

r2(1− ϵ)2|g′(0)|2

)
.

Simplifying:

log

(
1

r2

)
≤ log

(
1

r2(1− ϵ)2|g′(0)|2

)
,

which implies:

|g′(0)|2 ≤ 1

(1− ϵ)2
⇒ |g′(0)| ≤ 1

1− ϵ
.

Taking ϵ → 0, we get |g′(0)| ≤ 1, contradicting the assumption that |g′(0)| >
1. Hence, our original assumption that w /∈ g(D) must be false. Therefore, we
conclude that for any univalent function f : D → C with f(0) = 0 and f ′(0) = 1,
the image f(D) must contain the disk of radius 1

4 centered at the origin. This
completes our proof of Koebe’s 1/4 theorem, using extremal length.

4 Koebe’s Theorem via Grötzsch’s Theorem

While the first proof of Koebe’s Theorem used extremal length via a covering
space argument and the Koebe function, the second proof also relies on extremal
length but takes a different route. Instead of passing through a branched cover-
ing, it applies Grötzsch’s Theorem to compare the modulus of a family of curves
in D to an explicit extremal case. Both arguments depend on the conformal in-
variance of extremal length, but the second uses this to derive a contradiction
directly by comparing moduli in the image and preimage under f .

Theorem 4.1 (Grötzsch’s Theorem). Let E1 and E2 be two disjoint closed
continua in the unit disk D, each intersecting the boundary ∂D. Let Γ be the
family of all rectifiable curves in D connecting E1 and E2. Then the extremal
length (i.e., modulus) of Γ satisfies

mod (Γ) ≤ µ,
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where µ is the modulus of the extremal case, given when E1 and E2 are sym-
metric radial segments ending on the boundary of D at angles θ and θ + π, in

which case µ = 1
π log

(
1+

√
1−r2

r

)
, where r is the Euclidean distance of the radial

segment from the origin.

Now, we begin this proof of Koebe’s Quarter theorem. Suppose the con-
clusion is false. Then there exists a point w ∈ C with |w| < 1/4 such that
w /∈ f(D). We will derive a contradiction.

Define

g(z) :=
1

f(z)− w
,

which is analytic on D since w /∈ f(D). Note that g has a simple pole at the
preimage of w, but since w /∈ f(D), g is analytic throughout D.

Let us define a family of curves Γ in D connecting the sets

E1 := {z ∈ D : |f(z)− w| ≤ r} , E2 := {z ∈ D : |f(z)− w| ≥ R} ,

for some 0 < r < R such that R < dist(w, ∂f(D)). Then E1 and E2 are compact,
disjoint subsets of D.

Since f is analytic and univalent, it is conformal and preserves moduli of
curve families. Thus, the image family f(Γ) in the w-plane connects the annuli
boundaries

{z : |z − w| = r} and {z : |z − w| = R},

and has modulus

mod (f(Γ)) =
1

2π
log

(
R

r

)
.

By conformal invariance, we also have

mod (Γ) = mod (f(Γ)) =
1

2π
log

(
R

r

)
.

Now use Grötzsch’s Theorem to obtain an upper bound on (Γ) depending
on the geometry of Γ in D, especially since E1 and E2 are subsets of with some
separation. In particular, in the extremal case (i.e., radial segments at distance
r and R from the origin), Grötzsch’s modulus is minimized.

But since |w| < 1/4, we can show that the modulus (Γ) must exceed the
extremal bound given by Grötzsch’s Theorem, which leads to a contradiction.

Hence, the assumption that w /∈ f(D) for some |w| < 1/4 is false. Therefore,

B(0,1/4) ⊂ f(D).

5 Picard’s Little Theorem Via Bloch

We will give a proof of Picard’s Little Theorem, following an argument using
a similar argument Bloch’s Theorem, proved above and another lemma. This
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proof of Picard’s Little Theorem reflects ideas from both Bloch’s and Koebe’s
Theorems. Like Koebe’s results and Bloch’s bound on image size, we use omitted
values to constrain the image of a holomorphic map. The construction shows
that omitting two values forces the function’s image to be too small, unless the
function is constant, reinforces the theme common to all three results: that
holomorphic functions which omit certain values must necessarily have highly
constrained domains or be trivial in form.

Lemma 5.1. Let G ⊂ C be simply connected, and let f ∈ O(G) satisfy 1 /∈
f(G) and −1 /∈ f(G). Then there exists a function F ∈ O(G) such that

f = cosF.

Proof. Since 1−f2 has no zeros in G, it follows that there exists g ∈ O(G) such
that

(f + ig)(f − ig) = f2 + g2 = 1,

and hence f + ig has constant modulus 1. Thus we may write f + ig = eiF for
some holomorphic function F on G, and therefore

f =
1

2
(eiF + e−iF ) = cosF.

Now, we begin our proof of another theorem necessary for the proof of Pi-
card’s little theorem. We define a function f as follows:

f(z) :=
1

2
[1 + cos (π cos(πg(z)))] .

Our goal is to show that such a function omits the value 1, and hence by Bloch’s
Theorem, its domain must be small. First, observe that g(z) omits 0 and 1, and
hence so does cos(πg(z)) omit values ±1. Thus, by the lemma above, cos(πg(z))
avoids ±1 and therefore we can write

cos(πg(z)) = cosF (z)

for some F ∈ O(G). Then

f(z) =
1

2
[1 + cos(π cosF (z))] .

To prove that g cannot be entire unless constant, we will show that f omits
the value 1. Suppose otherwise: that there exists z ∈ G such that f(z) = 1.
Then cos(π cosF (z)) = 1, so π cosF (z) ∈ 2πZ, implying that cosF (z) ∈ 2Z.

Let us consider the preimage set:

A :=
{
mπ ± i log(n+

√
n2 − 1) : m ∈ Z, n ∈ N

}
.

These are the values z such that cos z ∈ Z and cos(π cos z) = 1.
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More precisely, let z = p± i log(n+
√
n2 − 1) for p ∈ πZ, and observe that

cos(π cos z) = 1 when cos z ∈ Z, say even integers 2q.
Let us compute the logarithmic difference between two successive terms:

log(n+ 1 +
√
(n+ 1)2 − 1)− log(n+

√
n2 − 1) = log

1 +
√
1 + 2

n

1 + 1
n

 <
1

n2
.

Thus, summing over n, we obtain a bound on the “height” of the values of F (G)
(which must avoid the grid points A). It follows:

log

(
1 +

π

4
+

√
1 +

(π
4

)2)
< log(2 +

√
3) < π.

By the monotonicity of the logarithm and the spacing of the imaginary parts,
we conclude that F (G) omits all such grid points A and hence cannot contain
a disc of radius 1.

Therefore, the domain G must lie in a disc of radius strictly less than 1, as
required.

□
From this, we can prove Picard’s Little Theorem.

Theorem 5.2. If f is a nonconstant entire function, then the image f(C) omits
at most one complex number.

Proof. Let f be entire and omit two complex numbers, say a and b. Then the
function

g(z) :=
f(z)− a

b− a

is an entire function omitting 0 and 1, and so by the quarter theorem, the
domain of g is contained in a disc of radius less than 1. But g is entire, so this
is only possible if g is constant, and hence f is constant.

6 Gauss Circle Problem

The Gauss circle problem, originally posed by the famous mathematician Gauss
asks the fundamental question: how many integers m,n are there such that for
some real number r ≥ 0

m2 + n2 ≤ r2.

Another way to phrase the same question, consider it an equivalent state-
ment, is the following: find the number of lattice points (m,n) such that all of
these lattice points are contained inside of a circle with radius r at the origin.

Geometrically, an example of this can be shown by the following:
The main meat of this problem comes in understanding the fundamental

relationship of these lattice points as r is allowed to vary. It is known, quite
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Figure 1: This is a circle with radius 4 and has exactly 29 lattice points contained
within it.

trivially, that the number of lattice points satisfying the Gauss’ circle property
can be estimated with an error bound and the area of the circle. There is one
lattice point per unit square, which can then be used to estimate the area of
the circle.

Let V (r) denote the number of integers that satisfy this property for a given
radius r, then for some error bound E(r),

V (r) = πr2 + E(r). (1)

Thes best upper bound on E(r) = Crθ has been shown to be around
θ ≤ 131

208 ≈ 0.6298. It is also known that θ > 1
2 . This lower bound is given by

Landau.
However, we are proposing something a little ambitious (and prolly incorrect)

to work towards this problem. First, we consider a twist to the problem that is
taking things away from the real plane.

Definition 6.1 (Complex Lattice Point). A complex lattice point (m,n) is a
point defined such that z = m+ ni for m,n ∈ Z.

It is quite trivial to see that there is a bijective mapping from the complex
lattice points to the real lattice points. One such mapping can take every lattice
point and maps it to its identity point in the real plane. That is (m,n) in the
real and complex plane can represent the same value. This is important because
it also implies that we can count points in this domain and it will represent the
same number of points in our original domain.

An important complex analysis theorem, which is not proven but fundamen-
tal to the field, states the following important result:

Theorem 6.1 (Riemann Mapping Theorem). Let U be a simply connected
open subset of the complex plan C, which is not all of C, then there exists a bi
holomorphic mapping f from U onto the open unit disk D.

Now, consider the function f(z) = ez. This function satisfies the conditions
of the Landau’s Theorem and the Riemann Mapping Theorem.
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