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Abstract. Dirichlet’s Theorem on Arithmetic Progressions states that there are infinitely
many primes congruent to a modulo q, where gcd(a, q) = 1. We prove a strong form of
Dirichlet’s Theorem: that the sum of the reciprocals of primes congruent to a modulo q
diverges. We use Dirichlet Characters and their associated L-functions to prove this fact.

1. Introduction

Over 2000 years ago, Euclid proved that infinitely many primes exist using a simple proof
by contradiction. Less than 200 years ago, an extension of this simple fact was proven by
German mathematician Peter Gustav Lejeune Dirichlet. Dirichlet’s Theorem on Arithmetic
Progressions deals with counting primes of a specific residue class.

Theorem 1.1. For any two coprime positive integers a and d, there are infinitely many
prime numbers in the arithmetic progression a, a+ d, a+ 2d, . . . .

As evidenced by the time gap between these theorems, proving Dirichlet’s Theorem is by
no means simple; Dirichlet’s proof required techniques in Complex Analysis and Analytic
Number Theory established by prior mathematicians, such as Euler. The main idea of the
original proof is to show a stronger statement.

Theorem 1.2. For coprime positive integers a, q, the sum∑
p≡a (mod q)

1

p

diverges, where p ranges over prime numbers.

Such divergence would imply an infinite number of terms in the sum and, thus, an infinite
number of primes congruent to a modulo q. Not only does this sum imply divergence, but
it also suggests that density of primes congruent to a modulo q is not small.

The proof of Theorem 1.2 introduces the use of L-functions, a more concrete definition
of which will be given later in this paper. Dirichlet L-functions are example of more general
Dirichlet Series, defined by

∞∑
n=1

an
ns

for any sequence of complex numbers a1, a2, . . . and any complex number s.

2. Dirichlet Characters

When considering numbers of a certain moduli, it often makes sense to use Dirichlet
Characters to define mappings.
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Definition 2.1. Let m be a positive integer. A Dirichlet Character modulo m is a function
χ : Z → C with the following properties:

(1) For integers a, b, we have χ(ab) = χ(a)χ(b).
(2) χ is periodic with period m; in other words, χ(a+m) = χ(a) for positive integers a.
(3) χ(a) = 0 if and only if gcd(a,m) > 1.

Dirichlet Characters were actually introduced in Dirichlet’s paper on primes in arithmetic
progressions, in which Dirichlet’s Theorem is proven. One such well-known example of
Dirichlet characters is the following:

Example. If p is a prime, then the Legendre Symbol
(

a
p

)
, defined by

(
a

p

)
=


0 p | a,
1 p ∤ a and there is an x such that x2 ≡ a (mod p),

−1 there is no x such that x2 ≡ a (mod p)

is a Dirichlet Character modulo p. In particular,
(

ab
p

)
=
(

a
p

)(
b
p

)
and

(
a+p
p

)
=
(

a
p

)
.

Another important Dirichlet Character is the principal character, which is defined very
simply as follows:

Definition 2.2. The principal character, often denoted χ0, is defined as

χ0(a) =

{
0 if gcd(a,m) > 1

1 if gcd(a,m) = 1.

In general, Dirichlet characters act as a homomorphism from a group (Z/mZ)× to the
multiplicative group of the complex numbers, C×.

Now, we can define a specific type of L-function, based on Dirichlet characters:

Definition 2.3. Let χ be a Dirichlet Character. Then, it’s associated L-function is

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

Whilst Dirichlet characters are homomorphisms that act on multiple residue classes, L-
functions are a way to single out a specific residue class a (mod q). A more useful form of
L-functions is through their Euler Product, namely the form

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

(
1− χ(p)

ps

)−1

,

where the two expressions are equivalent to each other via geometric series expansion. Note
that the multiplicative property of Dirichlet Characters also allows for this different form.

To understand some of the techniques needed for the proof, it makes sense to look at how
L-functions can be used for one such case - particularly, for primes congruent to 1 modulo 4.
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3. The case p ≡ 1 (mod 4)

Showing that there are infinitely many primes congruent to 1 modulo 4 by itself is not
too hard of a task - in fact, one could use ideas similar to Euclid’s proof that infinitely
many primes exist. However, for illustrative purposes, we will prove this fact similarly to
the general proof of Dirichlet’s Theorem.

In particular, we should first define a Dirichlet character for modulo 4; while multiple can
be used, the most logical one is defined by

χ4(a) =


1 if a ≡ 1 (mod 4)

−1 if a ≡ 3 (mod 4)

0 if a ≡ 0, 2 (mod 4).

Of important note is the following corollary, which we will use in the proof:

Proposition 3.1. L(1, χ4) =
π
4
.

Proof. Note that

L(1, χ4) =
1

1
− 1

3
+

1

5
− . . . ,

which is the Taylor Series expansion for arctan(x) at x = 1. In particular, this evaluates to
arctan(1) = π

4
. ■

Much as, in general, we would like to show that the sum of the reciprocals of primes for
a specific residue class diverges, we would like to show that some expression involving all
primes congruent to 1 modulo 4 diverges.

In particular, consider the expression ζ(1)L(1, χ4). Clearly, this is divergent, because

ζ(1) =
∞∑
n=1

1

n

is the harmonic series, which diverges. Writing the product ζ(1)L(1, χ4) using the Euler
Product, we get

ζ(1)L(1, χ4) =

( ∏
p prime

(
1− 1

p

)−1
)( ∏

p prime

(
1− χ(p)

p

)−1
)
.

We can take out the terms involving p = 2, since these do not impact the convergence or
divergence of this product. Now, split up the product based on whether p ≡ 1 (mod 4) or
p ≡ 3 (mod 4). If p ≡ 1 (mod 4), then χ(p) = 1, whereas if p ≡ 3 (mod 4), then χ(p) = −1;
thus, we are dealing with the divergent product∏

p prime,
p≡1 (mod 4)

(
1− 1

p

)−2 ∏
p prime,

p≡3 (mod 4)

(
1− 1

p2

)−1

.



4 SOUNAK BAGCHI

Thus, it suffices to show that the second product converges. In particular, by taking the log
of the second product, we get that

log
∏

p prime,
p≡3 (mod 4)

(
1− 1

p2

)−1

=
∑

p prime,
p≡3 (mod 4)

log

(
1− 1

p2

)−1

.

Using the Taylor Series for log(1− x), the inner term ends up being the sum
∞∑
n=1

1

np2n

, so it follows that this sum is less than or equal to
∞∑
p=2

∞∑
n=1

1

np2n
≤

∞∑
p=2

∞∑
n=2

1

pn
=

∞∑
p=2

1

p2 − p
,

which clearly converges. Hence, the product involving primes congruent to 1 modulo 4 must
diverge, meaning there are infinitely many primes congruent to 1 modulo 4.

4. The general case

In the previous section, we were able to isolate a product/sum involving primes only con-
gruent to 1 modulo 4. This general strategy is what we would like to replicate - singling out
primes congruent to a (mod q). Essentially, in order to isolate a residue class, what we’d
like to do is find a series of Dirichlet Characters such that some linear combination of them
exists that is 0 everywhere, other than at a (mod q).

As usual, we will try to show that the sum

Pa(s) =
∑

p prime,
p≡a (mod q)

1

ps

diverges at s = 1. In particular, we’d like to relate this sum to that of some L-function.

Denote the set of all Dirichlet characters for a modulo m as X(m). First, we should
establish an important property of Dirichlet Characters, namely the orthogonality relation:

Lemma 4.1. For all integers a and positive integer m, we have∑
χ∈X(m)

χ(a) =

{
ϕ(m) a ≡ 1 (mod m)

0 a ̸≡ 1 (mod m)
.

Proof. Note that χ(1) = 1 for all Dirichlet characters, as χ(1) = χ(1 · 1) = χ(1)2. Thus,
if a ≡ 1 (mod m), then χ(a) = 1 for all ϕ(m) Dirichlet characters, resulting in a sum of ϕ(m).

Otherwise, if gcd(a,m) > 1, then it follows that χ(a) = 0 for all χ ∈ X(m), leading to a
sum of 0. Now, assume gcd(a,m) = 1 and a ̸≡ 1 (mod m). Choose a Dirichlet character χ1

with χ1(a) ̸= 1. Then, since χχ1 runs over all dirichlet characters, it follows that

χ1(a)
∑

χ∈X(m)

χ(a) =
∑

χ∈X(m)

χ1(a)χ(a) =
∑

χ∈X(m)

χ(a),
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and since χ1(a) ̸= 1, it follows that
∑

χ∈X(m) χ(a) = 0. ■

This relation gives light to the next lemma, which will be key to relating our series Pa(s)
to an L-function:

Lemma 4.2. Suppose a,m are integers with gcd(a,m) = 1. Then, the function

f(n) =
∑

χ∈X(m)

χ(a)−1

ϕ(m)
· χ(n)

is 1 when n ≡ a (mod m), and 0 otherwise.

Proof. Note that χ(a)−1χ(n) = χ(a−1n) ranges over all residue classes modulo m. Thus,
since a−1n ≡ a−1a ≡ 1 (mod m) for n ≡ a mod m, from Lemma 4.1, dividing by ϕ(m)
gives the desired result. ■

Thus, we can rewrite our series Pa(s) using f(n), namely by

Pa(s) =
∑

p prime

f(n)

ps
=

∑
χ∈X(m)

χ(a)−1

ϕ(m)

∑
p prime

χ(p)

ps
.

Consider this series at s = 1, and compare it to the L-function

L(1, χ) =
∏

p prime

(
1− χ(p)

p

)−1

.

Recall what happened when we took the logarithm of our L-function in Section 3; it gave
us something very similar to the sum Pa(1), hence if we can show that the divergence of
log(L(1, χ)) over all Dirichlet characters ϕ ∈ X(m) implies the divergence of Pa(1), our task
becomes easier.

Let’s tackle the first part of this; relating our expression for Pa(s) with that of log(L(1, χ)).
We have

log(L(1, χ)) =
∑

p prime

∞∑
n=1

χ(p)n

npn

via an expansion similar to that in Section 3. Taking the n = 1 term out, we get

log(L(1, χ)) =
∑

p prime

χ(p)

p
+
∑

p prime

∞∑
n=2

χ(p)n

npn
.

As we saw before, the double sum converges; let’s say that it converges to a constant C(χ).
Then,

Pa(1) =
∑

χ∈X(m)

χ(a)−1

ϕ(m)

∑
p prime

χ(p)

p
=

∑
χ∈X(m)

χ(a)−1

ϕ(m)

∑
p prime

(logL(1, χ)− C(χ)).

Since ϕ(m) and C(χ) are finite constants that don’t affect divergence, this sum diverges if
and only if ∑

χ∈X(m)

χ(a)−1 logL(1, χ)

diverges. Note that, for the principal character χ0, the sum diverges at s = 1 (Via comparison
to the harmonic series ζ(1)). For non-principal characters χ, the value L(1, χ) converges;
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hence, if we can show that logL(1, χ) converges for all χ ̸= χ0, then the sum will diverge.
This is true since L(1, χ) converges, except for one wrinkle: if L(1, χ), the sum will still
diverge. So, we need to show for all non-principal characters that L(1, χ) ̸= 0.

5. L(1, χ) ̸= 0

Since Dirichlet’s proof, which involved this key fact, many different proofs for L(1, χ) ̸= 0
have been developed, relying on different machinery. Dirichlet’s proof used what was known
as additive characters, from which he derived an explicit formula for L(1, χ). His proof,
as others, involved the use of separately considering complex-valued characters, which are
dirichlet characters χ such that there exists some n with χ(n) ∈ C\R, and real-valued
characters. We will also follow this path in this section.

5.1. Complex-valued characters. For complex-valued characters, the trick with most
proofs is to show that a specific expression involving L(1, χ) is nonvanishing, implying L(1, χ)
is nonvanishing. In this case, consider the product

g(s) = L(s, χ0)
3L(s, χ)4L(s, χ2).

Following [4], we will show that |g(1)| ≥ 1, and in fact that |g(s)| ≥ 1 for all s with ℜ(s) = 1.
Note in particular that, since χ is complex valued, χ2 ̸= χ0. Letting θm,p be the argument
of χ(pm) in R, from the Euler Product expansions of each Dirichlet Character,

|g(s)| =

∣∣∣∣∣exp
(∑

m,p

3 + 4χ(pm) + χ2(pm)

mpms

)∣∣∣∣∣ = exp

∣∣∣∣∣∑
m,p

3 + 4 cos θm,p + cos2θm,p

mpm

∣∣∣∣∣ .
The main trick now (which arises rather surprisingly!) is that

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2(1 + cos θ)2 ≥ 0,

hence every term in this large sum is non-negative. This implies that |g(s)| ≥ e0 = 1. In
particular, g(1) ̸= 0, so L(1, χ) ̸= 0.

5.2. Real-valued characters. For the real-valued characters, we will take a different, more
motivated approach (adapted from [5]) in this paper that relies on a few more techniques
related to analytic number theory. First, we should make use of the basic fact that real-
valued characters χ can only take on the values −1, 0, 1; too see why, for a Dirichlet character
modulo m, one could decompose χ(an) = (χ(a))n where n is the order of a modulo m.

Now, the proof relies on the multiplicative function

A(n) =
∑
d|n

χ(d).

In particular, we must prove one important property of this function:

Theorem 5.1. A(n) ≥ 0 for all n, and A(n) ≥ 1 if n is a perfect square.
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Proof. Since A is a multiplicative function, it suffices to show that these two facts hold for
prime powers p. In particular, note that

A(pa) =
a∑

t=0

χ(pt) = 1 +
a∑

t=1

χ(pt).

χ(p) can only take on the values −1, 0, 1. If χ(p) = 0, then A(pa) = 1, and if χ(p) = 1, then
each term in the sum is 1, so A(pa) = a+ 1. Otherwise, if χ(p) = −1, then

A(pa) =

{
0 if a is even

1 if a is odd
.

Thus, A(pa) ≥ 0, and if a is even, then A(pa) ≥ 1. Using the multiplicative property of A
concludes the proof. ■

Now, consider the function

B(x) =
∑
n≤x

A(n)√
n

.

We will relate this to an expression in L(1, χ) to show L(1, χ) ̸= 0. Note that

B(x) =
∑
n≤x

A(n)√
n

>
∑
m2≤x

A(m2)

m
≥
∑

m≤
√
x

1

m
.

This last sum is greater than log(
√
x) = log x

2
. At the same time using the definition of A(n),

we have

B(x) =
∑
n≤x

A(n)√
n

=
∑
lm≤x

χ(l)√
lm

.

This latter sum can be expanded as∑
l≤

√
x

χ(l)l−
1
2

∑
m≤x

l

m− 1
2 +

∑
m≤

√
x

m− 1
2

∑
√
x<l< x

m

χ(l)l−
1
2 .

In fact, both of these sums are asymptotically equivalent to x
1
2 · L(1, χ) +O(1), thus

B(x) = 2x
1
2 · L(1, χ) +O(1) >

log x

2
.

Hence, it follows that L(1, χ) ̸= 0 (in fact, L(1, χ) ≥ log x√
x
).

6. Extensions of Dirichlet’s Theorem

As one might expect, Dirichlet’s Theroem on Arithmetic Progressions can be extended to
show that the primes are actually equidistributed in every moduli; in other words, using the
statement of the Prime Number Theorem,

#(p ≤ x; p ≡ a (mod m), gcd(a,m) = 1) ∼ 1

ϕ(m)

x

log(x)
.

Additionally, Chebatorev’s Density Theorem can be seen as a generalization of Dirichlet’s
Theorem, for the Nth cyclotomic field K.
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