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1 Introduction

The Hardy–Littlewood circle method is a fundamental technique in analytic
number theory, introduced by G.H. Hardy and J. E. Littlewood in the early
20th century (2,3). It is designed to obtain asymptotic formulas for the number
of representations of integers in additive problems, using Fourier-analytic and
complex-analytic ideas. Some applications include Waring’s problem (sums of
kth powers) and partial results on Goldbach’s conjecture (sums of primes) (2,3).
In this paper we present an expository treatment of the circle method. We
begin by introducing generating functions and the relevant tools from complex
analysis. After establishing the contour-integral framework, we describe the
major/minor arc decomposition and derive asymptotic formulas. We conclude
with applications to Waring’s problem and to partial results on the Goldbach
conjectures.

2 Generating Functions and Contour Integrals

Let an be a sequence of nonnegative integers (for example, an might count
representations of n by a given form). Define the generating function

F (z) =

∞∑
n=0

anz
n.

Under suitable hypotheses, F (z) is analytic in a region of the complex plane.
The coefficients an can be extracted by a contour integral. In particular, by
Cauchy’s Integral Formula for coefficients (see, e.g., (1)) we have:

Theorem 2.1 (Cauchy’s Integral Formula). If F (z) is analytic on and inside a
simple closed contour C and has a power series expansion F (z) =

∑∞
n=0 anz

n,
then for each n ≥ 0,

an =
1

2πi

∮
C

F (z)

zn+1
dz.
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In particular, if F (z) is analytic on the unit circle |z| = 1, one takes C to be
that circle. Writing z = e2πiα with α ∈ [0, 1), one obtains

an =
1

2π

∫ 1

0

F (e(α)) e(−nα) dα,

where e(α) = e2πiα. Thus an is the n-th Fourier coefficient of the function
F (e(α)) on the unit circle.

The Residue Theorem allows one to evaluate contour integrals by summing
residues of poles:

Theorem 2.2 (Residue Theorem). If G(z) is meromorphic on and inside a
positively oriented simple closed contour C, with isolated singularities z1, . . . , zk
inside C, then ∮

C

G(z) dz = 2πi

k∑
j=1

(G; zj).

In practice, one often deforms contours or expands functions in Laurent
series around singular points to approximate integrals. These are standard in
complex analysis (see (1)).

3 The Circle Method: Major and Minor Arcs

With the generating-function integral in hand, Hardy and Littlewood introduced
a key decomposition of the unit circle into major arcs and minor arcs. The idea
is that F (e(α)) (or its power) is often largest when α is close to a rational a/q
with small denominator q. We show this for a typical additive problem.

For instance, let

F (α) =

N∑
m=0

e(αmk),

where N ≈ n1/k. Then

F (α)s =
∑
n′

rs(n
′)e(αn′), rs(n) =

∫ 1

0

F (α)se(−nα) dα,

counts representations of n as a sum of s kth powers. We dissect [0, 1) as follows.
Fix a parameter Q ≪ nϵ. For each reduced rational a/q with 1 ≤ q ≤ Q, define
the major arc

M(q, a) =
{
α :

∣∣α− a

q

∣∣ < Q

n

}
.

Let M be the union of these arcs and let m = [0, 1) \M be the minor arcs.
On a major arc α = a/q + β with |β| < Q/n, one finds

F (α) =

N∑
m=0

e
(amk

q

)
e(βmk).
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The factor
∑N

m=0 e(am
k/q) is a complete exponential (Gauss) sum modulo q,

usually denoted

S(q, a) =

q∑
r=1

e
(ark

q

)
.

The remaining factor e(βmk) is slowly varying for |β| ≪ 1/N and can be ap-
proximated by an integral. In effect, one shows

F (α) ≈ 1

q
S(q, a)

∫ N

0

e(βtk) dt.

Hence the contribution to rs(n) from α ∈ M(q, a) is asymptotically∫
M(q,a)

F (α)se(−nα) dα ≈ S(q, a)s

qs

∫
|β|<Q/n

(∫ N

0

e(βtk) dt
)s

e(−nβ) dβ.

Summing over a and q yields a factorization of the main term into a singular
series and a singular integral. One obtains

rs(n) ∼ S(n) I(n),

where the singular series is

S(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

S(q, a)s

qs
e
(
−an

q

)
,

and the singular integral I(n) comes from the continuous integral. Under suit-
able congruence hypotheses, one shows S(n) converges to a positive limit as s
grows (7). Thus the major arcs contribute the main asymptotic term for rs(n).

On the minor arcs α ∈ m (away from rationals a/q), classical exponential-
sum bounds imply that F (α) is much smaller. Weyl’s inequality (see (5)) gives
|F (α)| ≪ N1−δ for some δ > 0 if α is not close to any a/q with q ≤ Q.
Consequently one shows ∫

m

|F (α)|s dα = o(ns/k−1),

when s is large enough. Hence the minor-arc contribution is negligible relative
to the major-arc main term.

4 Asymptotic Analysis of Exponential Sums

A crucial ingredient is precise estimation of sums and integrals. For α = a/q+β
near a rational, one shows

N∑
m=1

e(αmk) ≈ 1

q
S(q, a)

∫ N

0

e(βtk) dt,
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as above. When α is not near a small-denominator rational, one uses analytic
estimates (Weyl bounds, van der Corput, etc.) [5] to obtain

∣∣∣ N∑
m=1

e(αmk)
∣∣∣ ≪ N1−δ

for some δ > 0. This yields the minor-arc bound. The transition from sums
to integrals may be justified by Poisson summa‘tion or stationary phase (con-
tour integration). Together, these techniques allow the major-arc integral to be
evaluated asymptotically and the minor-arc integral to be bounded as an error
[5].

5 Applications to Waring’s Problem

5.1 What is Waring’s problem?

Waring’s problem asks: for each k ≥ 2, what is the least g(k) such that every
sufficiently large integer is the sum of g(k) kth powers? Let Rs,k(n) be the
number of representations of n as xk

1 + · · ·+ xk
s . The circle method predicts an

asymptotic

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)n

s/k−1 + o(ns/k−1),

where Ss,k(n) is the singular series for kth powers [7]. If s > g(k) then typically
Ss,k(n) is nonzero and one deduces Rs,k(n) > 0 for large n. Hardy and Little-
wood showed, for example, that every large integer is a sum of at most 19 fourth
powers [2][4], giving g(4) ≤ 19, and that g(3) = 9 [4]. Modern refinements by
Vaughan [6] and Wooley [7] have significantly improved these bounds (using
stronger exponential-sum estimates and new mean-value theorems).

6 Partial Results on Goldbach’s Conjecture

Goldbach’s conjectures concern expressing numbers as sums of primes. The
circle method can be adapted by using the generating series of primes (via the
von Mangoldt function - will add bib text entry later for this-). Vinogradov
showed that every sufficiently large odd integer is the sum of three primes.
Analytically, we see that

R3(n) =

∫ 1

0

(∑
p≤N

e(αp)
)3

e(−nα) dα,

where p runs over primes. On major arcs one uses distribution of primes in arith-
metic progressions (from Dirichlet L-functions) to approximate

∑
p≤N e(ap/q) ∼

(µ(q)/ϕ(q))N . This yields the main singular-series term (matching Vinogradov’s
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singular series). On the minor arcs one applies estimates for trigonometric sums
over primes to show the contribution is small. Vinogradov’s theorem then im-
plies the weak Goldbach conjecture (every large odd n is a sum of three primes).
Further work (by Ramaré and others) shows every large even n is a sum of at
most six primes, and Helfgott (2013) proved the odd Goldbach conjecture in
full.

7 Conclusion

In summary, the circle method translates additive problems into questions about
the analytic behavior of generating functions on the unit circle. It relies on
tools from complex analysis such as Cauchy’s integral formula, contour inte-
gration, and Fourier analysis (1). Its success in problems like Waring’s and
Goldbach’s highlights the power of combining analysis with arithmetic. With
ongoing improvements, such as sharper mean-value theorems (7), the method
remains central to additive number theory.
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