
AN INTROCUTION TO MODULAR FORMS

SIDDHARTH KOTHARI

Definition 0.1. Let k ∈ Z. A modular form of weight k for the group SL2(Z) is a function
f : H → C such that

• f is holomorphic on H,

• (modularity condition)f
(
aτ+b
cτ+d

)
= (cτ + d)kf(τ), for all

(
a b
c d

)
∈ SL2(Z) and τ ∈ H,

• |f(τ)| is bounded as Im(τ) → ∞.

Remark 0.2. Note that the zero function is a modular form of any weight. Further, observe that
there are no non-zero modular forms of odd weight: Set a = −1 = d and b = 0 = c in the modularity
condition. Then f(τ) = (−1)kf(τ) =⇒ f(τ) = −f(τ) =⇒ f(τ = 0) for all τ ∈ H.

This definition poses many questions. Why is the function define only onH := {z ∈ C : I(z) > 0},
the upper-half plane? Why is f composed with the function (aτ + b)(cτ + d)−1, and what does
SL2(Z) have to do with any of this? And, most importantly, why would one care to learn more
about these kind of objects? Where do they fit in the landscape of mathematics? We aim to
answer, at least partially, these questions here.

1. The Modularity Condition and Homogeneous Functions on Lattices

We start our discussion with a lattice, which generalizes the ‘discreteness’ of the relation between
Z to R, in an attempt to ’draw out’ requiremnt number 2 from the definition of a modular form.

Definition 1.1. Let ω1 and ω2 be complex numbers. Define the lattice generated by ω1 and ω2,
by Λ(ω1, ω2) := {a1ω1 + a2ω2 : ai ∈ C}. We require ω1 and ω2 to be linearly independent, that is,
ω1/ω2 ̸∈ R, so that Λ(ω1, ω2) is not a line. Any set of this form is called a lattice.

A trivial way in which we can create another lattice out of a pre-existing one, say Λ, is simply by
scaling it by some non-zero complex number λ: λΛ := {λa : a ∈ Λ}. With this in mind, consider
a function F : L → C, where L is the set of all lattices. If F is such that F (λΛ) = λkF (Λ) for all
λ ∈ C× and Λ ∈ L for some integer k, then it does seem plausible to call it a generalization of a
linear map, since the λ comes out of the ride, albeit by some factor k that may not be one. We call
such an F homogeneous (on lattices) of weight k.

For any linearly independent ω1 and ω2, we can consider the function G(ω1, ω2) := F (Λ(ω1, ω2)).
The homogeneity of F implies that

G(αω1, αω2) = F (Λ(αω1, αω2)) = F (αΛ(ω1, ω2)) = αkG(ω1, ω2).

Taking α to be ω−1
1 , we have G(1, ω2/ω2) = ωk

1G(ω1, ω2) = F (Λ(1, ω2/ω1)), so G is completely
determined by where F sends lattices generated by {1, τ} for some τ ∈ C. This allows us to
consider a uni-variate function f(τ) := G(1, τ) = F (Λ(1, τ)).

However, there are constraints on f : given two complex numbers τ1 ̸= τ2, we may have Λ(1, τ1) =
Λ(1, τ2), meaning we have f(τ1) = f(τ2). And when does this happen?

Proposition 1.2. Two pairs (1, τ1) and (1, τ2) are such that Λ(1, τ1) = Λ(1, τ2) if and only if there
exists integers a, b, c and d such that ad− bc = 1 and(

a b
c d

)(
τ1
1

)
=

(
τ2
1

)
.

1
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Indeed, these ‘change of basis’ like matrices have a special name.

Definition 1.3. The special linear group over Z of degree 2, denoted by SL2(Z), is defined to be
the set of 2× 2 matrices with integer entries and with determinant 1.

Remark 1.4. SL2(Z) forms a group under matrix multiplication.

Therefore, we have

f(τ1) = F (Λ(1, τ1)) = F (Λ(cτ1 + d, aτ1 + b))

= F

(
(cτ1 + d)Λ

(
1,

aτ1 + b

cτ1 + d

))
= (cτ1 + c)kF

(
Λ

(
1,

aτ1 + b

cτ1 + d

))
= (cτ1 + d)kf

(
aτ1 + b

cτ1 + d

)
,

meaning that f satisfies the modularity condition!

Remark 1.5. Note that the map τ 7→ aτ+b
cτ+d with

(
a b
c d

)
∈ SL2(Z) defines a left group action on H.

Indeed, the formula

I

(
aτ + b

cτ + d

)
=

(ad− bc)I(τ)

|cτ + d|2
,

applicable for all a, b, c, d ∈ R and τ ∈ C such that τ ̸= −d/c, means that γτ ∈ H for all τ ∈ H and
γ ∈ SL2(Z). It can also be shown that γ1(γ2τ) = (γ1γ2)τ for γ1, γ2 ∈ SL2(Z) simply by expanding
everything out.

Before we end this section, we introduce the first non-trivial modular form.

Definition 1.6. The Eisenstein series of weight k for k ≥ 1 is a function from H to C defined by

Ek(τ) =
∑

(m,n)∈{Z2−(0,0)}

1

(m+ nτ)k
.

This definition is quite latticy. Indeed,

Ek(τ) =
∑

ω∈Λ(1,τ)∗

1

ωk
,

where Λ(1, τ)∗ denotes the non-zero elements of Λ(1, τ). From our previous work, it should not
come as a suspire that Ek satisfies the modularity condition. Spieling out the details,

Proof. We have

Ek

(
aτ + b

cτ + d

)
=

∑
(m,n)∈Z2−{(0,0)}

1(
m+ n

(
aτ+b
cτ+d

))k =
∑

(m,n)∈Z2−{(0,0)}

(cτ + d)k

(m(cτ + d) + n(aτ + b))k

= (cτ + d)k
∑

(m,n)∈Z2−{(0,0)}

1

((md+ nb) + τ(cm+ an))k

= (cτ + d)k
∑

(m′,n′)=(m,n)

(
d c
b a

)
1

(m′ + n′τ)k
.
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As ad − bc = 1, the map from Z2 to Z2 defined by (m,n) 7→ (m,n)

(
d c
b a

)
is a bijection, which

completes the proof. Eisenstein series satisfy curious identities involving ζ(s) and σ(n). Also, note
that E2

4 = E8 and E6E4 = E10, and in general, any E2k can be expressed as a polynomial expression
in E4 and E6, a fact whose generalization we will explore later.

■

2. q−series for a modular form

Recall the Fouries series of a function, defined below.

Proposition 2.1. Let f : R → R be a 2π−periodic function. Then we have that

f(x) =

∞∑
n=−∞

f̂(n)einx,

where

f(n) =
1

2π

∫ π

−π
f(x)e−inx dx,

for all n ∈ Z.

The key take-away here was to analyze a possibly complex function by breaking it up into
several manageable parts. More precisely, we expressed f as a linear combination of the exponential
functions, einx, which is itself a combination of the fundamental, the most basic, periodic functions:
sin(nx) and cos(nx). It terns out we can do something similar for modular forms (Observe that
modular forms have ’a lot’ of periodicity built into them. In particular, f(τ + 1) = f(τ).) as well,
as illustrated in the next theorem.

Theorem 2.2. Let f : H → C be a function such that

• f is holomorphic,
• f(τ + 1) = f(τ) for all τ ∈ H,
• and |f(τ)| is bounded as J(τ) → ∞.

Then there exist complex numbers (ai)
∞
i=0 such that

f(τ) =
∞∑
n=1

ane
2πinτ .

Before going into the formal proof, note that the above series resembles a power series expansion
in e2πiτ . Thus, we define the function q(τ) := e2πiτ from H to the punctured unit disk.

The proof is broken up into a series of lemmas.

Lemma 2.3. The function defined by q(τ) := e2πiτ for all τ ∈ H is locally invertible and maps
surjectively to the punctured disk D′ := {z ∈ C : 0 < |z| < 1}.

Proof. Write τ = x + yi where y > 0. Then e2πiτ = e2πi(x+yi) = e2πix−2πy = e−2πye2πix. Thus,
|q(τ)| = |e−2πy| = e−2πy ∈ (0, 1). Therefore, q(τ) ∈ D′. Next, being locally invertible is equivalent
to having a non-zero derivative throughout a function’s domain. We have q′(τ) = 2πie2πiτ , which
is clearly non-zero as the complex exponential is never zero. Conversely, a z ∈ D′ can be written
as z′ = au, where 1 > a > 0 is such that a = |z|, and hence can be written in the form e−2πy for
y > 0, and u is a unit complex number, which can also be written as e2πix for some real x. ■

Lemma 2.4. Let the function g : D′ → C be defined by g(q) = f(τ) where e2πiτ = q. Then g is
well-defined, holomorphic and bounded.

Next, we compute the q−series of the Eisenstein series.
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Theorem 2.5. For k ≥ 4, we have

Ek(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e
2πin.

To prove this, we assume the Poisson summation formula.

3. The Vector space of Modular forms

Let Mk denote the vector space of all modular forms of weight k of SL2(Z).

Lemma 3.1. If k < 0, then Mk = {0}.

Theorem 3.2. Every Mk is finite dimensional, and dimMk is [k/12] + 1 if k ̸≡ 2 modulo 12 and
dimMk is [k/12] if k is 2 modulo 12.

Proposition 3.3. Let f : H → C be a holomorphic function. Next, let S be the set

Sk =

{(
a b
c d

)
∈ SL2(Z) : f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for all τ ∈ H

}
.

Then S is a subgroup of SL2(Z).

4. The Weierstrass Elliptic Function

4.1. Periodic Functions in Real-Land. When we studied calculus, we were exposed to a com-
plete zoo of functions, things like xn, log x, ex, sinx and cosx. Out of these characters, one set
that particularly stood out were the so-called periodic functions, like the trigonometric golden duo
sinx and cosx. On the definition level, a function f : R → R is said to be periodic if there exists
a p ∈ R such that f(x) = f(x + p) for all x ∈ R. If we choose such a p > 0 to be minimal, then
we call p the period, and more importantly, f is completely determined by the values it takes on
in the interval I = [0, p], which is called the fundamental domain for f , in the sense that one can
construct the whole of f by duplicating and translating I along the real line.

In general,

Definition 4.1. Let ω1 and ω2 be two complex numbers linearly independent over R. Then, the
Weierstrass elliptic function corresponding to the lattice Λ(ω1, ω2) generated by ω1 and ω2, denoted
by ℘Λ(ω1,ω2), is defined by

℘Λ(ω1,ω2)(z) =
1

z2
+

∑
λ∈Λ(ω1,ω2)\{0}

(
1

(z + λ)2
− 1

λ2

)
,

for all z ∈ C− Λ(ω1, ω2).

Remark 4.2. The sum above is actually finite, that is, it converges. To see this, we rewrite

1

(z + λ)2
− 1

λ2
=

λ2 − (z + λ)2

λ2(z + λ)2
= − z(2λ+ z)

λ2(z + λ)2
.

Now, for a fixed z, we have that as |λ| → ∞,

Remark 4.3. Sometimes, we may write ℘(z;ω1, ω2) to denote ℘Λ(ω1,ω2)(z).
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4.2. Extracting Modular Forms from the Weierstrass Elliptic Function. The Laurent
series expansion for ℘Λ(ω1,ω2) about z = 0 (where it has a double pole, as at every other lattice
point), has the form

1

z2
+

∞∑
k=1

c2k(ω1, ω2)z
2k,

where c2k is a complex-valued function that takes as input two linearly independent complex
numbers for each k ∈ N. It can be easily checked from the definition that ℘Λ(αω1,αω2)(αz) =

α−2℘Λ(ω1,ω2)(z) for all α ∈ C∗. Putting this relationship into the Laurent series, we have

℘Λ(αω1,αω2)(αz) =
1

(αz)2
+

∞∑
k=1

c2k(αω1, αω2)(αz)
2k = α−2

(
1

z2
+

∞∑
k=1

α2k+2c2k(αω1, αω2)z
2k

)

= α−2

(
1

z2
+

∞∑
k=1

c2k(ω1, ω2)z
2k

)
,

meaning that c2k+2(αω1, αω2) = α−(2k+2)c2k(ω1, ω2) for all α ∈ C∗. This means that c2k is a
homogeneous function on lattices of weight 2k + 2. From our previous work, we know that the
function defined by f2k(τ) = c2k(1, τ) for all τ ∈ H is a modular form of weight 2k + 2! We’ve
created a huge number of modular forms of different weights in a jiffy! All that remains to be done
is to calculate these coefficients!

Proposition 4.4. Using the notation above, we have that

c2k(ω1, ω2) = (2k + 1)E2k+2(ω1, ω2),

where

En(ω1, ω2) :=
∑

λ∈Λ(ω1,ω2)−{0}

1

λk
,

for all n ≥ 3.

Proposition 4.5. The series defined by En(ω1, ω2) converges absolutely for all n ≥ 3 and R−linearly
independent ω1, ω2 ∈ C.
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Definition 4.6. Let τ ∈ H. We define the Dedekind eta function η(τ) by

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ ) = q
1
24

∞∏
n=1

(1− qn),

where q := e2πiτ .

Definition 4.7. Define the complex valued function P by

P (τ) = (2π)12η24(τ),

for all τ ∈ H.

To show that P is a modular form of weight 12, we need the following proposition that governs
how η transforms when it is composed with the map τ 7→ − 1

τ .

Theorem 4.8. We have that

η

(
−1

τ

)
=

√
τ

i
η(τ),

for all τ ∈ H.

The proof of this functional equation will be split into several parts. First, we relate η to ϑ
using Euler’s pentagonal number theorem. Then, we show that ϑ satisfies a particular functional
equation to get the result.

Lemma 4.9. Let a be a positive real number and x, b ∈ R. Then we have that

(4.1)
∞∑

n=−∞
e−2πi(x+n)be−πa(x+n)2 =

1√
a

∞∑
n=−∞

e−
π
a
(n+b)2e2πixn.

Proof. Define the function f : R → R by f(x) = e−2πibxe−πax2
for all x ∈ R. Notice that f is a

Schwartz function (see the appendix) for a > 0, so we can use the Poisson summation formula on

f . To do so, we first calculate f̂(u).
We have

f̂(u) =

∫ ∞

−∞
f(x)e−2πiux dx =

∫ ∞

−∞
e−πax2−2πibx−2πiux dx

=

∫ ∞

−∞
e−π(ax2+2i(u+b)x) dx

=

∫ ∞

−∞
e−π((x

√
a)2+2i(u+b)x+((u+b)i/

√
a)2−((u+b)i/

√
a)2) dx

= e−
(u+b)2π

a

∫ ∞

−∞
e−π(x

√
a+(u+b)i/

√
a)2 dx.

Now, set s =
√
π(x

√
a+ (u+ b)i/

√
a) so that dx = 1√

πa
ds and

f̂(u) =
e−

(u+b)2π
a

√
πa

∫ ∞+(u+b)i/
√
a

−∞+(u+b)i/
√
a
e−s2 ds =

e−
u2π
a

√
πa

∫
C
e−z2 dz,

where C is the contour defined by γ(t) = t + (u + b)i/
√
a for t ∈ R. Note that the function e−z2

is an entire function, so
∫
C e−z2 dx =

∫
C′ e

−z2 dz, where C ′ is the real axis. The latter is just the
famous Gaussian integral, whose value is

√
π. Therefore,

f̂(u) =
1√
a
e−

(u+b)2π
a ,
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for all u ∈ R. Lastly, we have that
∞∑

n=−∞
f(x+n) =

∞∑
n=−∞

e−2πi(x+n)be−πa(x+n)2 and
∞∑

n=−∞
f̂(n)e2πixn =

1√
a

∞∑
n=−∞

e−
π
a
(n+b)2e2πixn.

Invoking the Poisson summation formula gives the desired result. ■

We can Notice that the multivariate complex valued function defined by

G1(z, w, τ) :=
∞∑

n=−∞
e−2πi(z+n)weπiτ(z+n)2 ,

for (z, w, τ) ∈ C × C × H is absolutely convergent on compact subsets of its domain, and hence
holomorphic on its domain.

Indeed, assume that |Rz| ≤ AR, |Iz| ≤ AI , |Rw| ≤ BR, |Iw| ≤ BI and |Rτ | ≤ CR, |Iτ | ≤ CI .
Then we have that∣∣∣e−2πi(z+n)weπiτ(z+n)2

∣∣∣ = ∣∣∣e−2πizwe−2πiwneπiτz
2
e2πiτnzeπiτn

2
∣∣∣ ≤ e2π(I(zw)+nI(w)−nJ(τz))−n2πJ(τ)−πJ(τz2).

Notice that J(zw), J(τz) and J(τz2) are bounded. Thus,
∞∑

n=−∞

∣∣∣e−2πi(z+n)weπiτ(z+n)2
∣∣∣ ≤ eA

′
∞∑

n=−∞
eB

′n−C′n2
,

where A′, B′ and C ′ are positive constants, which can be expressed in terms of the I’s and the R’s.
The fact that G1 is absolutely convergent now follows as the sum on the right is convergent.

Similarly, the function defined by

G2(z, w, τ) := (−iτ)−1/2
∞∑

n=−∞
e2πizn−πi(n+w)2/τ ,

for all (z, w, τ) ∈ C×C×H is also absolutely convergent and holomorphic. Recall that G1(x, b, ia) =
G2(x, b, ia) for all x, b ∈ R and a > 0, meaning that G1 and G2 agree on the set S = {(m, k, n) :
m, k ∈ R and I(n) > 0,R(n) = 0} which is a subset of the domain C × C × H. Therefore, by the
multi-variable identity theorem (see appendix), G1 and G2 agree everywhere on their domain.

Corollary 4.10. Let z, w ∈ C and τ ∈ H. Then we have that

(4.2)

∞∑
n=−∞

e−2πi(z+n)weπiτ(z+n)2 = (−iτ)−1/2
∞∑

n=−∞
e2πizn−πi(n+w)2/τ .

We can use this to prove a related functional equation satisfied by the ϑ function.

Corollary 4.11. Let z ∈ C and τ ∈ H. Then we have that

ϑ

(
z,−1

τ

)
=

√
π

i
eπiτz

2
ϑ(zτ, τ).

We now massage the expression for η a bit in order to use equation 4.2.

Lemma 4.12. We have that

η(τ) =

∞∑
n=−∞

eπine3πiτ(n+1/6)2 .

Proof. Recall the pentagonal number theorem, which states that
∞∏
n=1

(1− e2πinτ ) =
∞∑

n=−∞
(−1)neπiτ(3n

2+n).
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Multiplying both sides by e
πiτ
12 and invoking the definition of η yields

η(τ) =
∞∑

n=−∞
(−1)neπiτ(1/12+3n2+n) =

∞∑
n=−∞

(−1)ne3πiτ(n
2+n/3+1/36) =

∞∑
n=−∞

eπine3πiτ(n+1/6)2 ,

as (−1)n = eπin. ■

And now for the main proof!

Proof. Replacing τ with τ/3, setting w = 1/6 and z = 1/2 in equation 4.2, we get that
∞∑

n=−∞
eπine−3πi(n+1/6)/τ = (−iτ/3)1/2e−iπ/6

∞∑
n=−∞

e−πin/3eπiτ(1/2+n)2/3.

Notice that as n runs through the integers, so do 3n− 1, 3n and 3n+ 1. Therefore,

η(−1/τ)(−iτ/3)−1/2eiπ/6 =
∞∑

n=−∞
e−πi(3n−1)/3eπiτ(3n−1/2)2/3 +

∞∑
n=−∞

e−πineπiτ(3n+1/2)2/3 + I,

where I =
∑∞

n=−∞ e−πi(3n+1)/3e(3n+3/2)2/3.
First, notice that as n runs through the integers, so does −n− 1. Hence,

I =
∞∑

n=−∞
e−πi(3(−n−1)+1)/3e(3(−n−1)+3/2)2/3 = e2πi/3

∞∑
n=−∞

eiπne(−3n−3/2)2/3

= e2πi/3eπi/3
∞∑

n=−∞
e−iπn−iπ/3e(3n+3/2)2/3

= −I,

which implies I = 0. Second, note that for the other part S =
∑∞

n=−∞ e−πi(3n−1)/3eπiτ(3n−1/2)2/3+∑∞
n=−∞ e−πineπiτ(3n+1/2)2/3 we have,

S = eiπ/3
∞∑

n=−∞
e−πineπiτ(3n−1/2)2/3 +

∞∑
n=−∞

e−πineπiτ(3n+1/2)2/3

= eiπ/3
∞∑

n=−∞
eπineπiτ(−3n−1/2)2/3 +

∞∑
n=−∞

eπineπiτ(3n+1/2)2/3

= (3/2 + i
√
3/2)

∞∑
n=−∞

eπineπiτ(n+1/6)2

= (3/2 + i
√
3/2)η(τ).

Therefore, η(−1/τ) = (−iτ/3)1/2(e−
πi
6 )(3/2+i

√
3/2)η(τ) = (−iτ)1/2η(τ), as e−πi/6(3/2+i

√
3/2) =√

3, which completes the proof. ■

Lemma 4.13. We have that
η(τ + 1) = e

πi
12 η(τ).

Proof. We have that

η(τ + 1) = e
πi(τ+1)

12

∞∏
n=1

(1− e2πin(τ+1)) = e
πi
12 e

πiτ
12

∞∏
n=1

(1− e2πinτe2πin) = e
πi
12 η(τ),

as e2πin = 1. ■
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Corollary 4.14. The function P as defined above is a modular form of weight 12.
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