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Abstract. The j-function is a modular function that arises in various areas of mathematics
with many interesting properties. In this expository paper, we first define the modular
groups and modular functions. We also express the j-function using the Eisenstein series
and prove that the j-function is a modular function. We then explain the relationship

between the j-function and the remarkable fact that eπ
√
163 is about 7.5 × 10−13 away

from an integer. Finally, we briefly discuss connections between the j-function and the
Chudnovsky algorithm, and the monster group.

1. Modular Groups and Functions

Definition 1.1. The modular group SL2(Z) is the multiplicative group of 2 × 2 matrices
over Z with determinant 1.

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z and ad− bc = 1

}
We define an action of SL2 on H for some matrix A ∈

(
a b
c d

)
and some τ ∈ H as

Aτ =
aτ + b

cτ + d

Definition 1.2. A modular function is a function f : H → C such that

(1) f is meromorphic.

(2) For any matrix α =

(
a b
c d

)
∈ SL2Z, we have

f(ατ) = f

(
aτ + b

cτ + d

)
= f(τ).

(3) For all α ∈ SL2(Z), the Fourier expansion of f(ατ) has only finitely many nonzero
coefficients for negative exponents. (Letting a = b = d = 1, c = 0 in (2) gives
f(τ + 1) = f(τ), so f has a Fourier expansion.)

Condition (3) is often phrased as “f is meromorphic at the cusps”. Consider the standard
fundamental domain of the modular group SL2(Z), Ω = {z | ℑ(z) > 0,−1

2
< ℜ(z) < 1

2
, |z| >

1
2
}. The region Ω has “cusps” at −1

2
, 1

2
, and ∞. Condition (3) essentially says that f is

meromorphic at ∞, where by ∞ we mean τ → ∞ inside Ω, i.e. ℑτ → ∞ and −1
2
≤ ℜτ ≤ 1

2
.

Remark 1.3. Modular functions are a type of modular form. A modular form of weight
k is a holomorphic function f : H → C such that f is holomorphic at the cusps (so the
Fourier expansion of f(ατ) has no nonzero coefficients for negative exponents) and f

(
aτ+b
cτ+d

)
=

1
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(cτ + d)kf(τ) when

(
a b
c d

)
∈ SL2Z. (The second condition is a generalization of condition

(2), which is the special case where k = 0).

2. Eisenstein Series

Definition 2.1. For integers n > 2, we define the Eisenstein series of weight n as

En =
∑

(a, b) ∈ Z2

(a, b) ̸= (0, 0)

1

(a+ bτ)n
.

Eisenstein series satisfy several important properties:

Proposition 2.2. We have

(1) The series for En converges absolutely when n > 2.
(2) En = 0 when n is odd.
(3) En(τ + 1) = En(τ)
(4) En(−1/τ) = τnEn(τ).

(5) En

(
aτ+b
cτ+d

)
= (cτ + d)nEn(τ) when

(
a b
c d

)
∈ SL2(Z).

Proof. Properties (1) through (4) are not hard to prove. We prove (5), as we will use this
result later in the paper. To do so, we use the fact that SL2(Z) is generated by the matrices(

1 1
0 1

)
and (

0 −1
1 0

)
.

So it suffices to prove (5) for these two matrices. We have

En

((
1 1
0 1

)
τ

)
= En(τ + 1) = En(τ)

by (3), and

En

((
0 −1
1 0

)
τ

)
= En(−1/τ) = rnEn(τ)

by (4), as desired, so we’re done. ■

Remark 2.3. The Eisenstein series is an example of a modular form. We may show that
Eisenstein series is holomorphic using the fact that the limit of a uniformly convergent se-
quence of holomorphic functions is holomorphic. Condition (5) is exactly the transformation
property of modular forms. Lastly, we may show that E2n is “holomorphic at the cusps”
either by explicitly working out the coefficients of the Fourier expansion with clever identities
(this can be found in [1]), or by showing that En converges as τ → i∞.
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3. j-Function and its properties

Now, we are ready to define the j−function.

Definition 3.1. The j−function j : H → C is defined as

j(τ) =
1728g2(τ)

3

g2(τ)3 − 27g3(τ)2

where g2 = 60E4 and g3 = 140E6.

We will see later why the coefficient 1728 is necessary.
The modular discriminant ∆(τ) can be defined as the denominator i.e g2(τ)

3 − 27g3(τ)
2.

The discriminant is a modular form of weight 12. It is also the discriminant of ℘′2(z) =
4℘3 − g2℘− g3.
Now we proceed to show that j(τ) is a modular function.

Proposition 3.2. The j-function is a modular function.

Proof. We first need to prove that the j-function is holomorphic. We will not do this in
detail, but a sketch of the proof is as follows: ∆(τ) is nonvanishing since the roots of
℘′2(z) = 4℘3− g2℘− g3 are distinct, therefore its discriminant is nonzero. Now we only need
to prove that g2(τ) and g3(τ) are holomorphic. We know that g2(τ) converges absolutely, so
we prove uniform convergence on compact subsets of H using the fact that g2(τ +1) = g2(τ).
The proof for g3(τ) is similar. Thus, j(τ) is holomorphic.

Next, we prove that modular functions are invariant under the action of SL2(Z. Consider

an arbitrary

(
a b
c d

)
∈ SL2(Z). Using properties of Eisenstein series, we get

j

(
aτ + b

cτ + d

)
=

1728((cτ + d)4g2(τ))
3

((cτ + d)4g2(τ))3 − 27((cτ + d)6g2(τ))2
=

1728g2(τ)
3

g2(τ)3 − 27g3(τ)2
= j(τ)

Both modular forms of weight 12 in the numerator and denominator change by the same
proportion, so the j-function is invariant under the action of SL2Z. ■

We now prove a theorem about the set of rational functions of j(τ).

Theorem 3.3. The set of modular functions is the same as the set of rational functions of
j(τ).

It suffices to prove that all rational functions of j(τ) are modular functions and all modular
functions are rational functions of j(τ). The first part of the statement is trivial as for any

rational function of j(τ), f(τ) = P (j(τ))
Q(j(τ))

, f is meromorphic and f(Aτ) = f(τ) for A ∈ SL2(Z)
so its invariant under SL2(Z) and thus a modular function.
To prove that all modular functions are rational functions of j(τ), we first take an arbitrary

modular function f(τ) and get rid of its poles. The function j(τ) − j(τ0) has a zero at τ0,
so multiplying this function by f at the poles with multiplicity will remove all of the finitely
many poles of f on the fundamental domain. Specifically, the function

g(τ) = f(τ)
∏
k

(j(τ)− j(τk))
mk
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where τk is each pole on the fundamental domain of j with multiplicity mk has no poles on
the fundamental domain, and therefore in H. Thus g(τ) is holomorphic in H and can be
expressed as

g(τ) = a−nq
−n + a−n+1q

−n+1 + · · ·

The j-function is periodic, so it has a Fourier expansion. The Fourier expansion of the
j-function has only one negative power of q, where q = e2πir, i.e q−1. So there exists a
polynomial P (j(τ)) such that h(j(τ) = g(τ)−P (j(τ)) has no terms with nonpositive power
of q. Thus, h(i∞) = limℑ(τ)→∞ f(τ) = 0. We can further prove that h(H ∪∞) is compact,
so by the Maximum Modulus Principle, h is constant and h(τ) = 0. A good way to prove
that h(H∪∞) is compact is by considering f(τk), a sequence of points in the image; we just
find a subsequence that converges to a point of the form f(τ) where τ ∈ H ∪∞. More on
this can be found in [2]. Therefore, g(τ) is a polynomial in j(τ) and so f(τ) is a rational
function in j(τ).

4. The Fourier expansion of the j-function

Since j(τ +1) = j(τ), the j-function is periodic and has a Fourier expansion. We will also
refer to Fourier expansions as q-expansions, where q = e2πiτ .
This approach is due to [1]. We recall the q-expansions of E4(τ) and E6(τ):

E4(τ) =
π4

45

(
1 + 240

∞∑
r=1

σ3(r)q
r

)
,

E6(τ) =
2π6

945

(
1− 504

∞∑
r=1

σ5(r)q
r

)
.

For convenience, we use I to denote additional terms of an arbitrary power series in q with
integer coefficients.

E4(τ) =
π4

45
(1 + 240q + I) ,

E6(τ) =
2π6

945
(1− 504q + I) .

and

g2(τ) =
4π4

3
(1 + 240q + I) ,

g3(τ) =
8π6

27
(1− 504q + I) .

Now we may prove the main theorem of this section.

Theorem 4.1.

j(τ) =
1

q
+ 744 +

∞∑
n=1

cnq
n =

1

q
+ 744 + 196884q + 21493760q2 + · · ·

where the cn are integer coefficients and q = e2πiτ .
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Proof. Using our expansions for g2 and g3, we have

g2(τ)
3 =

64π12

27
(1 + 720q + I)

and

∆(τ) =
64π12

27
(1728q(1− 24q + I)).

Thus

j(τ) = 1728 · (64π12/27)(1 + 720q + I)

(64π12/27)(1728q(1− 24q + I))

j(τ) =
1 + 720q + I

q(1− 24q + I)

j(τ) =
1

q
(1 + 720q + I)(1 + 24q + I)

j(τ) =
1

q
(1 + 744q + I)

j(τ) =
1

q
+ 744 + I

which is the desired form. (This is why 1728 is present in the definition of the j-function: to
make the coefficients of the q-expansion integers.) We can explicitly compute terms of the
expansions of g2 and g3 to find the coefficients cn, which gives

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · · .

■

Remark 4.2. We have cn ∼ e4π
√
n

√
2n

3
4
as n → ∞, as proved in [3].

5. Why eπ
√
163 is almost an integer

We unfortunately must black-box the meat of this result, as it is quite technical. A proof
can be found in [2].

Theorem 5.1. We have

j

(
1 +

√
−163

2

)
= −6403202.

Note that if τ = 1+
√
−163
2

, then q = e2πi((1+
√
−163)/2) = −e−π

√
163. So we have

−6403202 = −eπ
√
163 + 744 +

∞∑
n=1

cnq
n

and thus

eπ
√
163 = 6403202 + 744

∞∑
n=1

cnq
n.
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But
∑∞

n=1 cnq
n is very small, since cn grows subexponentially and q = e−π

√
163 ≈ 3.808980937×

10−18 is very small. Thus eπ
√
163 is very close to an integer.

Proving this theorem requires a significant amount of abstract algebra, including Galois
theory, and is beyond the scope of this paper. A proof can be found in [2]. We remark that
it relies on the fact that 163 is a (in fact, the largest) Heegner number.

Definition 5.2. A Heegner number is a square-free integer d such that the ring of algebraic
integers Q[

√
−d] is a unique factorization domain.

The other Heegner numbers are 1, 2, 3, 7, 11, 19, 43, and 67. As a result, similar near-
equalities can be obtained from 43 and 67:

eπ
√
43 = 884736743.999777466 . . . ≈ 9603 + 744

and

eπ
√
67 = 147197952743.999998662454 . . . ≈ 52803 + 744.

The smaller Heegner numbers do not work as well, as eπ
√
163 is so close to an integer in part

because e−π
√
163 is so small, and replacing 163 with a significantly smaller number results in

a larger difference with the nearest integer.

6. Connections

The Chudnovsky algorithm for computing π, used for the main computation of all recent
records (including the computation of 3 × 1014 digits on April 2nd, 2025), is based on the
following rapidly convergent formula:

1

π
= 12

∞∑
k=0

(−1)k(6k)!(545140134k + 13591409)

(3k)!(k!)3(640320)3k+3/2

Note the appearance of j
(

1+i
√
−163
2

)
= 6403203—this is not a coincidence!

The j-function is one half of monstrous moonshine, the surprising connection between the
j-function and the monster group M , the largest simple sporadic group. Take a look at
sequence A001379 in the OEIS, “Degrees of irreducible representations of Monster group
M .”:

1, 196883, 21296876, 842609326, . . .

Now let’s see a few terms of the q-expansion for the j-function:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + . . .

Letting r1 = 1, r2 = 196883, r3 = 21296876, and r4 = 842609326, we have the remarkable
relationships

1 = r1,

196884 = r1 + r2,

21493760 = r1 + r2 + r3,

864299970 = 2r1 + 2r2 + r3 + r4.
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Similar nontrivial relationships can be observed in further terms. This connection was first
observed in 1979 by John McCay. In 1992, Richard Borcherds won the Fields Medal in large
part for explaining the connection by proving the Conway-Norton moonshine conjectures.
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