ELLIPTIC PDES THROUGH THE LENS OF COMPLEX ANALYSIS
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ABSTRACT. We explore the profound connection between elliptic partial differential equations and
complex analysis in the plane. The Cauchy-Riemann equations reveal that harmonic functions are
precisely the real and imaginary parts of holomorphic functions, allowing us to leverage complex-
analytic tools to solve boundary-value problems for elliptic equations. This perspective illuminates
classical results while providing concrete methods for explicit solutions.

1. INTRODUCTION
The story begins with Laplace’s equation:
Au = Ugy + Uyy = 0.

Solutions to this deceptively simple equation describe equilibrium temperatures, electrostatic po-
tentials, and countless other physical phenomena. What makes these harmonic functions so special
becomes clear when we view them through complex analysis.

This correspondence transforms elliptic boundary-value problems into questions about holomorphic
functions, where we can deploy powerful tools like contour integration, conformal mapping, and
residue calculus. The Poisson integral formula, Green’s functions, and explicit solutions all emerge
naturally from this complex-analytic viewpoint.

2. THE ELLIPTIC LANDSCAPE
Consider a general second-order linear operator on a domain Q C R?:
Lu = a(z,y)uze + 2b(z, y)uzy + c(z, y)uyy + d(x, y)ug + e(z, y)uy + f(z,y)u.

The character of this operator is determined by its principal part—the quadratic form a&? + 2b&n +
cn?—through the discriminant

A(xvy) = b(:l?,y)2 - a(:c, y)C(Z‘,y).

When A < 0, we call the operator elliptic. The archetypal example is the Laplacian A = 0y + Oyy,
which has discriminant —1 everywhere. This negative discriminant reflects a fundamental geometric
fact: elliptic operators have no real characteristic curves, making them fundamentally different from
their parabolic and hyperbolic cousins.

For elliptic equations, information propagates in all directions simultaneously, leading to the smooth-
ing properties we’ll explore. A solution that’s merely continuous at the boundary becomes infinitely
differentiable in the interior—a manifestation of elliptic regularity that mirrors the analyticity of
holomorphic functions.

3. HARMONIC FUNCTIONS AND THEIR COMPLEX SOUL

A function v : @ — R is harmonic if Au = 0. At first glance, this seems like a purely real-
analytic condition. Yet harmonic functions possess a hidden complex structure that explains their
remarkable properties.
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3.1. The Cauchy-Riemann Connection. The bridge between harmonic and holomorphic func-
tions is built from the Cauchy-Riemann equations. If f = u+1iv is holomorphic on a domain Q C C,
then complex differentiability at each point requires

o LG = 1)
h—0 h

to exist regardless of how h — 0. Taking limits along the real and imaginary axes gives us the
Cauchy-Riemann system:

Up = Vy, Uy = —Vy

A quick calculation shows that these equations immediately force Au = Av = 0:
AU = Ugy + Uyy = Vyg — Vgy = 0,

where the last equality uses the fact that mixed partials commute.

More remarkably, the converse holds: every harmonic function on a simply-connected region is
the real part of some holomorphic function. Given a harmonic function u on a simply-connected
domain, we seek its harmonic conjugate v such that u + iv is holomorphic.

The key insight is to consider the differential form
W= —Uy dr + uz dy.
Since u is harmonic, we have
dw = (—Uyy + Uge) dr AN dy = 0,
so w is closed. On simply-connected domains, every closed form is exact by Poincaré’s lemma,

giving us a function v with dv = w. This v is precisely the harmonic conjugate we sought.

Theorem 1. On any simply-connected domain, harmonic functions are exactly the real and imag-
inary parts of holomorphic functions.

This theorem allows us to translate between the worlds of real harmonic analysis and complex
function theory.

3.2. The Mean-Value Property. One of the most striking features of harmonic functions emerges
from their complex-analytic nature. If u is harmonic on a disk B(zp,7) C 2, then

1

2 )
u(zp) = 27T/0 u(zo + re®) do.

This mean-value property—that harmonic functions equal their average over any circle—follows
immediately from Cauchy’s integral formula applied to f = u + iv. Taking real parts of

Ly fz) .
f(20) %ZZO|=T

2w zZ— 20

yields the boundary average, while integration in polar coordinates gives the area average.
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FIGURE 1. Left: Level curves of the harmonic function u(z,y) = 22 — 3? = R(2?).
Right: Illustration of the mean-value property - the value at any point equals the
average over any surrounding circle.

4. EXPLICIT SOLUTIONS VIA COMPLEX METHODS
The complex-analytic perspective doesn’t just provide theoretical insight—it yields concrete solu-

tion methods. Consider these fundamental examples:

Example 1. The functions u,(r, ) = r™ cos(nf) are harmonic for any integer n > 0, since they’re
the real parts of 2. Their harmonic conjugates are v, (r, ) = " sin(n@).

Example 2. On C\{0}, the function u(z) = In |z| is harmonic with harmonic conjugate v(z) = arg z
(on appropriate branches). Together they form the complex logarithm Inz = In |z| 4 i arg z.

These building blocks, combined with conformal mapping techniques, allow us to solve Dirichlet
problems on complicated domains by reducing them to problems on simpler regions like disks or
half-planes.

The fundamental solution ®(z, () = % In |z — (| provides another route to explicit solutions through
Green’s representation formula. For any smooth function v on a domain with boundary 92,

ou 0P
w2 = [ (#0550 O 5 (0 ds(©) + [ Bl Au(e) dA)

When Au = 0, this reduces to a boundary integral that can often be evaluated using residue
calculus.

5. MAXIMUM PRINCIPLE AND UNIQUENESS FOR THE DIRICHLET PROBLEM

Harmonic functions are governed by a striking rigidity: they cannot oscillate freely but attain their
extreme values only on the boundary of a domain. This fact underlies the uniqueness of many
boundary-value problems for elliptic equations.

5.1. Maximum and Minimum Principles.

Theorem 2 (Maximum Principle). Let 2 C R? be a bounded domain and u € C?(Q2) N C°(Q2)
satisfy

Au=0 on Q.
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Then
maxu = maxu, minu = minu.

Q 0N Q oN
In particular, if u attains a strict maximum (or minimum) at an interior point, then u is constant

on ).

Proof. Suppose u attains a maximum at zp € 2. By the mean-value property (Section 3.2),

1 2m )
u(z9) = 27T/0 u(zo +re') df

for all sufficiently small » > 0. But if u(zp) is strictly larger than all nearby values, the right-hand
average must be strictly smaller, a contradiction. Hence no interior strict maximum can occur.
The same argument applies to minima upon considering —u. O

Remark. An alternative proof uses the maximum modulus principle from complex analysis. If u
is the real part of a holomorphic f = u 4+ iv, then |e®f| = ¢®* cannot have an interior maximum
for any a # 0, forcing w itself to obey the maximum principle.

5.2. Uniqueness of the Dirichlet Problem. A direct corollary of the maximum principle is the
following uniqueness result.

Theorem 3 (Uniqueness). Let © C R? be bounded with boundary 9 and suppose uj,uy €
C%(9) N C°(Q2) both satisfy
Au; =0 in Q, u; = ug on 0N

Then u; = ug on €.

Proof. Consider w = u; — ug. Then Aw =0 in Q and w = 0 on 9N2. By the maximum principle,
maxw = maxw = 0, minw = minw = 0,
a9 a0 a 0

sow =0on £, ie u; = us. O

Remark. Uniqueness alone does not guarantee existence of a solution to the Dirichlet problem.
Existence will be addressed via integral formulas (Poisson kernel, Green’s functions) in later sec-
tions.

5.3. Harnack’s Inequality. Beyond extremal values, positive harmonic functions satisfy a quan-
titative comparison principle.

Theorem 4 (Harnack’s Inequality). Let w > 0 be harmonic on the disk B(zp,2r) C Q. Then for
every z € B(zp,T),
2r — |z — 2|
2r 4+ |z — 2|

2r + |z — 2|
2r — |z — 2|

u(zo) < u(z) < u(2p).

Sketch. Apply the Poisson integral formula to v on concentric circles of radii » and 2r, and compare
the resulting boundary integrals. Alternatively, one may use the conformal map

. Z— 20

2r—(2—2)’

which sends B(zp,2r) onto the unit disk, then invoke the Schwarz lemma on the transformed
holomorphic function. ]

w
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Remark. Harnack’s inequality quantifies how a positive harmonic function cannot vary too rapidly,
a fact that is crucial in establishing interior Hélder and even C'*° regularity via covering and scaling
arguments.

6. BOUNDARY-VALUE SOLVERS VIA COMPLEX-ANALYTIC KERNELS

The maximum principle establishes uniqueness for the Dirichlet problem, but existence requires
constructive methods. Complex analysis provides explicit integral formulas that transform bound-
ary data into harmonic functions throughout the domain.

6.1. The Poisson Integral on the Unit Disk. The most fundamental example occurs on the
unit disk D = {z : |z|] < 1}. Given continuous boundary data g : 9D — R, we seek a harmonic
function u on D with u|sp = g.

The key insight comes from representing holomorphic functions via Cauchy’s formula. For f holo-
morphic on D and |z| < 1,

R S (9
f( )_271'2 |<‘:1C—Z

dc.
Taking real parts and manipulating the complex fraction yields the Poisson integral formula:

Theorem 5 (Poisson Integral Formula). For continuous g : 0D — R, the function
) 1 [27 .
ure’) = — [P0 —¢)g(c"?)d¢
2w 0
is harmonic on D and extends continuously to dD with boundary values g. Here
1—r?

T 1_—2rcosa+ 12

P ()

is the Poisson kernel.
Sketch. The Poisson kernel emerges from
ip 1— 2
Re (& +2) _ . |z
et — 2 |ei® — 2|2

for z = re®. The integral representation follows by taking real parts of the holomorphic Cauchy
formula. Boundary convergence uses the fact that P.(a) concentrates near a =0asr— 17. O

Example 3. For boundary data g(¢) = cos k¢ with integer k£ > 0, the solution is simply
u(r,0) = ¥ cos k.
This follows immediately since cos k¢ is the real part of e’*¢ and the Poisson integral applied to
e*? gives zF = r¥e’*? by complex analysis.
6.2. Green’s Functions and General Domains. For domains beyond the unit disk, we employ

Green’s functions—fundamental solutions that encode the geometry of the boundary.

The fundamental solution to Laplace’s equation in R? is

1
8(2,0) = 5|z — (|

This is harmonic in z for z # ¢ and satisfies A,® = §; in the sense of distributions.
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For a bounded domain © with smooth boundary, the Green’s function G(z, () is defined as the
unique solution to:

(1) A.G(2,¢) =6; for z €
(2) G(z2,{) =0 for z € 00

Theorem 6 (Green’s Representation Formula). For any u € C?(Q) N C(Q),
3} oG
w2 = [ (669506 050 (.6 ) ast©) + [ 69 Au(e) dA©)

When Au = 0, this reduces to a boundary integral that can often be evaluated using complex-
analytic techniques. The complex logarithm structure of ® makes residue calculus particularly
effective for domains with piecewise-smooth boundaries.

Example 4. For the upper half-plane H = {z : Im z > 0}, the Green’s function is
z— C‘
z—C|

This follows from the method of images: we subtract the fundamental solution centered at the
reflection ¢ to enforce the boundary condition on the real axis.

1
G(z,() = %ln

6.3. The Conformal Mapping Method. Complex analysis provides another powerful approach:
conformal transplantation. If we can conformally map a complicated domain €2 to a simpler
one (like the unit disk), we can solve the Dirichlet problem there and pull back the solution.

Theorem 7 (Conformal Transplantation). Let f : Q@ — D be a conformal map and g : 92 — R
be continuous boundary data. If v solves the Dirichlet problem on D) with boundary data g o f~1,
then u = v o f solves the Dirichlet problem on 2 with boundary data g.

This method is particularly effective for domains with corners or slits, where explicit conformal
maps are known.

Example 5. Consider the upper half-disk Q = {z : |z| < 1,Im z > 0}. The conformal map

22 -1

&)=y

sends 2 to the upper half-plane H. Combined with the Poisson integral for H, this gives explicit
solutions for problems on the half-disk.

7. CONCLUSION AND OUTLOOK

We have traced a remarkable correspondence between elliptic partial differential equations and
complex analysis. The Cauchy-Riemann equations reveal that harmonic functions are precisely the
real and imaginary parts of holomorphic functions, allowing us to translate between real analysis
and complex function theory.
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7.1. Broader Perspectives. Higher-dimensional theory. While complex analysis is inher-
ently two-dimensional, its spirit lives on in higher dimensions through Hodge theory and the de
Rham complex. The Laplacian on differential forms provides a natural generalization, and tools
like Sobolev spaces capture the regularity phenomena we’ve observed.

Numerical methods. The integral formulas we’ve derived have spawned entire fields of numerical
analysis. Boundary integral methods, based on Green’s representation formulas, reduce boundary-
value problems to equations on the boundary itself. Fast multipole methods and other techniques
from computational complex analysis have revolutionized large-scale scientific computing.

Connections to physics. The complex-analytic viewpoint illuminates deep connections between
mathematics and physics. Conformal field theory, integrable systems, and string theory all rely
heavily on the interplay between geometry, complex analysis, and differential equations that we’ve
explored.
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