
QUATERNIONIC ANALYSIS

NIKHIL REDDY AND SAMARTH DAS

Abstract. In this paper we discuss extending complex analysis to quaternions, a four
dimensional analogue of complex numbers. We explore natural generalizations of differen-
tiability, and eventually arrive at the notion of a regular function, which allows us to extend
the Cauchy Integral theorem and other results to quaternions.

1. Introduction

On Monday, October 16, 1843, a carving was made on the Brougham Bridge in Dublin,
Ireland by the mathematician William Rowan Hamilton. It read

i2 = j2 = k2 = ijk = −1.

This was the fundamental theorem defining the quaternions H. It was fundamental in the
development of four-dimensional analytical systems and spawned numerous other hyper-
complex field discoveries. Due to this, the development of complex analysis as a rigorous
mathematical system in both education and research generated an interest in doing some-
thing similar for quaternions. We will discuss some of these topics in this paper.

2. Quaternion Primer

Definition 2.1. If a, b, c, d ∈ R, then q = a + bi + cj + dk is called a quaternion, where
i, j, k are basis vectors in four-dimensional space, along with 1. The space of all quaternions
is denoted by H.

It’s easy to see that we add quaternions term wise. For multiplication, we simply distribute
each term and use the rule in the introduction. Because of this, however, multiplication with
quaternions is not necessarily commutative.

Example. Consider q1 = 1 + i+ j + k and q2 = 2 + i− j + 2k. Then

q1q2 = (1 + i+ j + k)(2 + i− j + 2k) = 6i+ 2k,

while

q2q1 = (2 + i− j + 2k)(1 + i+ j + k) = 2j + 6k.

Similar to complex numbers, quaternions also have a conjugation operation:

q = a+ bi+ cj + dk = a− bi− cj − dk.

Again similarly to complex numbers, this allows us to define a modulus:

|q| =
√

qq =
√

qq =
√
a2 + b2 + c2 + d2.

From this, we’re able to see that the every quaternion has an inverse:
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q−1 =
q

|q|2
.

3. Differentiability

From complex analysis, a function f : C → C is differentiable at a point z if the limit

lim
h→0

f(z + h)− f(z)

h
exists. We can define differentiability for quaternionic functions similarly, although we

have to be careful about non-commutativity.

Definition 3.1. A function f : H → H is left quaternion differentiable at q if the limit

lim
h→0

h−1[f(q + h)− f(q)]

exists. Similarly, a function f : H → H is right quaternion differentiable at q if the limit

lim
h→0

[f(q + h)− f(q)]h−1

exists.

Example. The function f(q) = q is both left and right differentiability with derivative 1.

Example. The function iq + 1 is right differentiable, but not left differentiable.
In fact, we have the following theorem:

Theorem 3.2. Let f : U → H be quaternion differentiable on the left, where U is a connected
open subset of H. Then there are constants a, b ∈ H such that

f(q) = a+ qb

for all q ∈ U .

Proof. the proof is at https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&
cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%

3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&

usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449

Unfortunately, this means that the natural extension of differentiability from complex
analysis isn’t very interesting in the quaternion setting. However, we can extend another
definition of differentiability, namely the Cauchy-Riemann equations.

In order for a complex function f(z) = u(x, y) + iv(x, y) to be differentiable, the two
equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
need to hold. Note that we can write this more succinctly as

∂f

∂x
+ i

∂f

∂y
= 0.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449
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Thus we again have a natural generalization to quaternions.

Definition 3.3. A function f : H → H is left regular if

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 0.

A function is right regular if

∂f

∂t
+

∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k = 0.

We let ∂l denote the operator

1

4

(
∂

∂t
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
and we let ∂r denote the operator

1

4

(
∂

∂t
+

∂

∂x
i+

∂

∂y
j +

∂

∂z
k

)
.

Example. Let f(q) = q + ix+ jy + kz. Then

∂lf =
1

4
(1 + ii+ jj + kk) =

1

4
(1− 1− 1− 1) = −1

2
̸= 0,

so f is not left regular.
From the definition of regular, we have the following two assertions:

Proposition 3.4. If f, g : H → H are left regular functions, then f + g is also left regular.

Proof. This simply follows from the linearity of differentiation, since we have

∂l(f + g) = ∂lf + ∂lg = 0 + 0 = 0.

Proposition 3.5. If f : H → H is left regular and a ∈ H, then fa is left regular.

Proof. We have

∂l(fa) =
1

4

(
∂(fa)

∂t
+ i

∂(fa)

∂x
+ j

∂(fa)

∂y
+ k

∂(fa)

∂z

)
=

1

4

(
∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z

)
a = ∂l(f)a = 0.

4. Quaternion-Valued Forms

Definition 4.1. If f : H → H is a differentiable function, then

df =
∂f

∂t
dt+

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

Theorem 4.2. Let f : H → H be a differentiable function. Then f is left regular at q if an
only if

Dq ∧ df = 0,

where Dq is the form

dx ∧ dy ∧ dz − idt ∧ dy ∧ dz − jdt ∧ dz ∧ dx− kdt ∧ dx ∧ dy.
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Proof. Distribute the wedge products and expand, factor what’s left to obtain

−
(

∂

∂t
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
(dt ∧ dx ∧ dy ∧ dz) = −4∂lf(dt ∧ dx ∧ dy ∧ dz).

For the full calculation, see https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%

3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&

usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449

5. Integral Theorem and Series Results

Theorem 5.1 For a quaternionic function F : H → H of quaternionic variable q, we
have ∫

∂Ω

[dS]q =

∫
Ω

dV.

Proof. Recall that the definition of Qq is

Qq = qi
∂

∂xi

q = q1
∂q

∂x1

+ q2
∂q

∂x2

+ q3
∂q

∂x3

+ q4
∂q

∂x4

,

or the outwardly directed surface element of Ω. We then define [dS](Q1,−Q2,−Q3,−Q4),
a row vector with the components of Qq. Let M be the 4 × 4 matrix representation of F .
Then, by the divergence theorem, we have∫

∂Ω

[dS]M =

∫
Ω

div M dV.

Because of the definition of divergence, we also have

div M = 0 ⇒
∫
Ω

div M = 0,

proving the theorem. ■
Theorem 5.2 (Cauchy’s theorem). If f is regular on every point of a 4-parallelepiped

C, then ∫
∂C

[dS]f = 0.

Proof. The proof can be found in https://dougsweetser.github.io/Q/Stuff/pdfs/

deavours.pdf ■
This theorem says: If f is a right-regular function and is a left-regular function, we have

that ∫
∂Ω

[dS]q = 0.

Now that we have developed enough context and prerequisites, we come to the last main
theorem of our paper, the Cauchy-Fueter integral formula, providing an analogue (but more
powerful) of Cauchy’s integral formula from complex function theory.

Theorem 5.3 (Cauchy-Fueter integral formula). If F is regular and sufficiently
differentiable on every point of the hypersurface ∂Ω and q0 is a point within ∂Ω, then

F (q0) =
1

8π2

∫
∂Ω

F (q)

|q − q0|4
(q − q0)

−1dS.

To prove this, we first establish another result:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjr2c3x59-NAxVF_8kDHfi3PYkQFnoECCEQAQ&url=https%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A1637307%2FFULLTEXT01.pdf&usg=AOvVaw1867aSpkd6Z76gcKDackwA&opi=89978449 
https://dougsweetser.github.io/Q/Stuff/pdfs/deavours.pdf
https://dougsweetser.github.io/Q/Stuff/pdfs/deavours.pdf
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Theorem 5.5. For a hypersurface ∂Ω in R4 with q ∈ ∂Ω, we have∫
∂Ω

(q − q0)
−1Qq = −8π2.

Proof. Note that since translation preserves regularity, we need only prove this result for
q0 = 0, and later containing 0. Because Qq is regular except at 0, by Theorem 5.3 we have∫

∂Ω

(q − q0)
−1Qq =

∫
Ω

Q(q−1) dV.

This is easily calculated to be −8π2 using the fact that q−1 = q
|q|2 , since |q| = 1 in our

integral.
For the unit sphere in R4 (4-dimensional Euclidean space), we have∫

S3

q−1Qq =

∫
S3

−8π2dS.

See https://dougsweetser.github.io/Q/Stuff/pdfs/Quaternionic-analysis-memo.pdf
for details. Putting this all together, we have∫

∂Ω

(q − q0)
−1Qq = −8π2. ■

With this step proven, we proceed to the proof of the Cauchy-Fueter type integral formula
(5.3).

Proof. Using Theorem 5.5 again, we see that because F and Q(q−1) are regular in the
region between |q − q0| = ϵ (for sufficiently small epsilon) and ∂Ω, we have∫

∂Ω

F (q)

|q − q0|4
(q − q0)

−1dS =

∫
|q−q0|=ϵ

F (q)

|q − q0|4
(q − q0)

−1dS.

Then, Qq can be found by re-modifying the expression as:

Qq = (q − q0)
−1dS.

Our function F is to be sufficiently differentiable (we must check that |q − q0| > 0),
Then, we evaluate

1

8π2

∫
|q−q0|=ϵ

F (q)

|q − q0|4
(q − q0)

−1dS = lim
ϵ→0

1

8π2

∫
|q−q0|=ϵ

F (q)

ϵ4
q − q0
ϵ2

dS

=
1

8π2
lim
ϵ→0

1

ϵ6

∫
|q−q0|=ϵ

F (q)(q − q0) dS.

Assuming F to be sufficiently differentiable (again), this leads to

=
1

8π2
lim
ϵ→0

(F (q0) +O(ϵ))

∫
|q−q0|=ϵ

(q − q0) dS = F (q0).

This completes the proof. ■

https://dougsweetser.github.io/Q/Stuff/pdfs/Quaternionic-analysis-memo.pdf
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