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Abstract. We introduce the circle method and sketch the steps of the process in the case of
Goldbach’s Weak conjecture and partitions.

1. Introduction

The circle method was initially formulated by Hardy and Ramanujan when they were studying
partitions. It was later refined by Hardy and Littlewood.

The general class of problems we will be considering are additive problems. Let Ai for i ∈ 1, . . . , k
be infinite sets of numbers. For example, Ai could be the set of perfect squares or primes. The
goal is to determine whether n ∈ N can be written as a1 + · · ·+ ak for ai ∈ Ai and find how many
ways n can be expressed in this way.

Additive problems covers a broad class of problems. Consider Goldbach’s Conjecture of whether
all even numbers can be expressed as the sum of two primes. In this case A1 and A2 are both the
set of primes. Another classic problem is Waring’s problem which asks what is the smallest k such
that n can be written as a sum of k perfect mth powers. In the language of additive problems, we
have Ai is the set of mth powers.

In Section 2, we describe the overarching steps of the circle method. In Section 3, we apply these
steps to Goldbach’s weak conjecture in a proof sketch. In Section 4, we apply ideas from the circle
method to get a formula for the number of partitions of any integer. This proof uses the same idea
of a contour integral, but doesn’t explicitly use ideas like major and minor arcs.

2. Circle Method Process

Let e(x) = exp(2ix). First, we convert the additive problem into generating functions by ex-
pressing the elements of Ai as

FAi(x) =
∑
ai∈Ai

e(aix).

Notice that

F (x) = FA1(x) · · ·FAk
(x) =

∞∑
n=1

r(n, k)e(nx),

where r(n, k) is the number of ways n can be expressed as a1 + · · ·+ ak for ai ∈ Ai.
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Example 2.1. Let N be the set of naturals. We then have

F (x) = FN(x) · FN(x) =

( ∞∑
a=1

e(ax)

)2

=

∞∑
a=2

(a− 1)e(ax),

and each coefficient, a− 1, is the number of ways to write a as the sum of two natural numbers.

Recall that ∫ 1

0
e(nx)dx =

{
1, if n = 0

0, otherwise
.

It follows that ∫ 1

0
F (x)e(−nx) dx =

∞∑
m=1

∫ 1

0
r(m, k)e(mx)e(−nx) dx = r(n, k).

In reality, convergence issues in the power series makes this a bit more complicated. The way this
is resolved is by truncating the generating functions. Let Ai(N) be the set of elements of Ai less
than or equal to N. Define FAi(N)(x) analogously to how FAi(x) was defined. Define FN (x) as the
product of the FAi(N)(x). Notice that for n ≤ N, it is pointless to consider elements of Ai which
are larger than N as we want the elements to sum to n. It follows that F (x) and FN (x) agree for
the first N terms, so ∫ 1

0
FN (x)e(−nx) dx = r(n, k),

removing convergence issues. All that is left to do is approximate this integral to find r(n, k). We
do this by splitting [0, 1) into sections called major arcs M and sections called minor arcs m and
integrating FN (x)e(−nx) over the M and m separately such that FN (x) is small on m and large
on M. On the major arcs, we integrate FN (x) to get an asymptotic formula for r(n, k), and on the
minor arcs, we bound the integral to show it has a lower order in terms of N than the integral over
the major arcs.

3. Proof Sketch of Goldbach’s Weak Conjecture

In this section we provide a high level sketch of the following theorem of Vinogradov closely
following [2].

Theorem 3.1 (Vinogradov). Any sufficiently large number can be written as the sum of 3 primes.

Let FN (x) =
∑

p≤N e(px) log p. We add the log p weights facilitate the asymptotic calculations.

This doesn’t change the purpose of FN (x) though as (FN (x))k =
∑∞

n=1 r(n, k)e(nx), where

r(n, k) =
∑

p1+···+pk=n
pi≤N

log p1 · · · log pk,

and if r(n, k) is positive, there is a way of writing n as a sum of primes.
In order to find the major and minor arcs, we now need to determine when |FN (x)| takes on

large values and small values. To see this, we first need to find an average value for |FN (x)| on the
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Figure 1. Plot of FN (x) and the line
√
N logN for N = 30 and 100.

unit circle in the complex plane. It is difficult to do this though, so we instead find the average
value of |FN (x)|2 and take the square root of the result to approximate the average of |FN (x)|.

Lemma 3.2. The average value of |FN (x)|2 is N logN + o(N logN).

Proof. Using the fact that |FN (x)|2= FN (X)FN (X) = FN (x)FN (−x)∫ 1

0
|FN (x)|2 dx =

∫ 1

0

∑
p≤N

e(px) log p
∑
q≤N

e(−qx) log q dx

=
∑

p,q≤N

log p log q

∫ 1

0
e((p− q)x) dx =

∑
p≤N

log2 p,

as the integral of e((p − q)x) is 1 if p = q and 0 otherwise. Through Abel summation, it can be
shown

∑
p≤N log2 p = N logN + o(N logN). ■

3.1. Major Arcs. Consider Figure 1. The x for which FN (x) is large seem to be concentrated
around fractions with small denominator like 1/2 and 1/3. Let us verify this fact. Let B > 0 and
Q = logB N ≪ N and fix q ≤ Q and a ≤ q relatively prime to q. We then have that

(3.1) FN

(
a

q

)
=
∑
p≤N

e

(
ap

q

)
log p =

q∑
r=1

∑
p≡r (mod q)

p≤N

e

(
ap

q

)
log p =

q∑
r=1

e

(
ar

q

) ∑
p≡r (mod q)

p≤N

log p,

where the last equality comes from the fact that e(x) = e(x+1), so all p equivalent modulo q yield
the same value of e(ap/q). By the Prime Number Theorem

∑
p≤x log p ∼ x. Therefore, it appears

that restricting the sum to iterate of p ≡ r (mod q) should just divide the result of the Prime
Number Theorem by a factor of φ(q) as the primes are distributed roughly even modulo q. The
following theorem shows this is indeed true.
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Theorem 3.3 (Siegel-Walfisz). Let C,B > 0 and let a and q be relatively prime. Then∑
p≡r (mod q)

p≤x

log p =
x

φ(q)
+O

(
x

logC x

)
,

where φ(q) is Euler’s totient function, q ≤ logB x, and the constant for the O-notation is indepen-
dent of r, q, and x.

Thus let us approximate the sum of log p at the end of Equation (3.1) with N/φ(q). Because this
sum does not depend on r, it can be factored out of the sum. The remaining sum is

q∑
r=1

(r,q)=1

e

(
ar

q

)
=

q∑
r=1

(r,q)=1

e

(
r

q

)
,

which has large magnitude for small q but as q increases the roots of unity e(r/q) become more
dispersed throughout the unit circle, causing them to cancel each other. But for small q, the sum
becomes some large constant K (which needs to be bounded more precisely in terms of q) and
FN (a/q) is roughly KN/φ(q) which is much greater than

√
N logN . Plugging the Siegel-Walfisz

theorem into equations is the more rigorous way of determining the magnitude of FN (x) in the
major arcs.

Let B > 0 and let Q = logB N. Define the following set

Ma,q =

{
x ∈ [0, 1]|:

∣∣∣∣x− a

q

∣∣∣∣ < Q

N

}
,

where the absolute value wraps around if needed, e.g., 0.9 and 0.1 have an absolute difference of
0.2. Let the major arc M be the union of Ma,q for all q ≤ Q and a ≤ q relatively prime to q.
These arcs are chosen to simplify asymptotics and because they are centered around fractions with
small denominator which are the areas where FN (x) is large. For large enough N, these arcs are
disjoint. When we integrate FN (x)3e(−Nx) to find r(N, 3) which is related to the number of ways
of expressing N as the sum of 3 primes modulo the log p weights, we will find

∫
M

FN (x)3e(−Nx) dx ≈

2Q3
Q∑

q=1

1

φ(q)3

q∑
a=1

(a,q)=1

 ∑
r=1

(r,q)=1

e

(
ar

q

)
3

e

(
−Na

q

)N2,

through the Siegel-Walfisz theorem. It remains to lower bound the coefficient of N2 as if it is too
small, the integral over the major arcs could be canceled by the integral over the minor arcs.

3.2. Minor Arcs. Using m = [0, 1] \M, we can bound the contribution of the integral over the
minor arcs.∣∣∣∣∫

m
FN (x)3e(−Nx) dx

∣∣∣∣ ≤ ∫ 1

0
|FN (x)3| dx ≤ (max

x∈m
|FN (x)|)

∫ 1

0
|FN (x)2| dx = (max

x∈m
|FN (x)|)N logN.

Integrating over [0, 1] instead of over m does not change the asymptotics by very much as m
cover the majority of [0, 1] already. We already have factored out the maxx∈m|FN (x)| term which
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accounts for the lower magnitude of FN (x) on m. Vinogradov showed maxx∈m|FN (x)|≪ N
logD N

,

which shows that the minor arcs cannot possibly cancel the major arcs which are on the order of
N2 for large N. It follows that any large enough N can be written as the sum of three primes.

4. Partitions

We now provide a more complete use of the circle method in determining a formula for partitions
closely following [1], i.e., the number of ways of a number can be expressed as a sum of positive
integers disregarding the order of the sum.

Example 4.1. The number of partitions for 4 is 5 : we have 4, 1+3, 2+2, 1+1+2, 1+1+1+1.

The generating function for the partitions is

F (x) =

∞∏
n=1

1

1− e(nx)
= 1 +

∞∑
m=1

p(n)e(mx),

where p(n) is the number of ways of partitions for n.
This proof will be split into three main parts. First, we will we will justify a different path of

integration using Ford circles and Farey fractions. This will lead to the Dedekind η function which
is roughly the reciprocal of F (x). Finally, we will use the properties of the Dedekind η function
to bound terms in the circle method integral and reduce it to a main term whose integral can be
found through the theory of Bessel functions.

4.1. Path of Integration. A key idea in the circle method is to find paths of integration where the
function can be easily approximated. Around singularities, functions generally have one dominant
term which can be used to approximate them. The singularities of F (x) are at all rational numbers.
Therefore, we want a path of integration around which moves around these rational numbers. The
rational numbers with smallest denominator are also the most significant as around a rational
number a/b, the term (1− e(bx))−1 is large but if b increased, as x shifts away from a/b, the term
(1 − e(bx))−1 decreases faster than if b was smaller. This leads us to Farey fractions and Ford
circles.

Define the sequence FN to be a list of rational numbers in [0, 1] whose denominator in simplified
form is less than or equal to N in order of smallest to largest.

Example 4.2. We have the following Farey sequences

• F1 =
0
1 ,

1
1 .

• F2 =
0
1 ,

1
2 ,

1
1 .

• F3 =
0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 .

• F4 =
0
1 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1 .

• F5 =
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1 .

Define the mediant of two fractions a/b and c/d to be (a+ c)/(b+d). Notice that the mediant of
two rational numbers always lies in between the two rational numbers. We also have the following
proposition.
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Proposition 4.3. Given 0 ≤ a/b < c/d ≤ 1 and bc − ad = 1, the fractions a/b and c/d are
consecutive in FN if and only if max(b, d) ≤ n ≤ b+ d− 1.

Proof. The lower bound on n follows from the fact that for n < max(b, d) at least one of a/b and
c/d is not in FN . For the upper bound, assume h/k lies between a/b and c/d. Then bh − ak ≥ 1
and ck − dh ≥ 1. We also have that

k = (bc− ad)k = b(ck − dh) + d(bh− ak) ≥ b+ d.

Therefore for n ≤ b + d − 1, there is no h/k between a/b and c/d. When n = b + d though, the
mediant of a/b and c/d lies between them in FN . ■

As shown in the example above, consecutive Farey fractions a/b and c/d satisfy bc − ad = 1.
This can be shown through induction as from the previous proposition, the first fraction between
a/b and c/d if bc− ad = 1 is (a+ c)/(b+ d), and b(a+ c)− a(b+ d) = 1 and (b+ d)c− (a+ c)d = 1.
Therefore, for all FN consecutive Farey fractions satisfy bc− ad = 1.

Farey fractions lead to Ford circles. Define the circle C(h, k) in the upper halfplane to be the
circle tangent to the real axis at h/k with radius 1/(2k2). See Figure 2 for an image of Ford circles.
Ford circles are closely related fo Farey fractions because of the following proposition.

Proposition 4.4. Two Ford circles C(a, b) and C(c, d) are tangent if and only if bc− ad = ±1.

Proof. The Ford circles are tangent if the distance between their centers is the sum of their radii.
The square of the distance between the centers of C(a, b) and C(c, d) is

D2 =
( c
d
− a

b

)2
+

(
1

2d2
− 1

2b2

)
.

Solving, we eventually see that D2 = (1/(2b)2 + 1/(2d)2)2 yields

(bc− ad)2 − 1

b2d2
= 0,

so bc− ad = ±1. ■

Therefore, the sequence of Farey fractions FN will correspond to a sequence of tangent Ford
circles. We can find an explicit form for the points of tangency between Ford circles C(a, b) and
C(c, d) with bc− ad = 1. We omit the proof of the following proposition.

Proposition 4.5. The tangent point between C(a, b) and C(c, d) if bc− ad = 1 is

α =
c

d
− b

d(b2 + d2)
+

i

b2 + d2
=

a

b
+

d

b(b2 + d2)
+

i

b2 + d2
.

We can now describe the path of integration P (N). Consider consecutive Farey fractions a/b, h/k,
and c/d in FN . Let C(a, b) and C(c, d) be tangent to C(h, k) at tangent points α1(h, k) and α2(h, k)
respectively. We have that α1(h, k) and α2(h, k) split C(h, k) into a upper arc and lower arc. Let
the upper arc be γh,k. The path of integration P (N) is the union of these arcs for all Farey fractions
in FN . Let γ0,1 only consist of points with nonnegative real part and γ1,1 only consist of points
with real part less than or equal to 1 so that P (N) is a path from i to i+ 1. Notice that this path
moves around the Farey fractions through the Ford circles so there will be simplifications due to a
dominating term around singularities.
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Figure 2. Ford circles in the complex plane. Image from https://en.wikipedia.

org/wiki/Ford_circle.

The path P (N) can be smoothly deformed into a straight line between i and i+ 1. Usually, we
integrate F (x) from 0 to 1, but integrating from i to i+ 1, has the same property that∫ i+1

i
e(nx)dx =

{
1, if n = 0

0, otherwise
.

So we have

p(n) =

∫ i+1

i
F (x)e(−nx) dx =

∫
P (N)

F (x)e(−nx) dx,

=

N∑
k=1

k∑
h=0

(h,k)=1

∫
γh,k

F (x)e(−nx) dx =
∑
h,k

∫
γh,k

F (x)e(−nx) dx,

where
∑

h,k is shortened notation. Therefore, it suffices to determine
∫
γh,k

F (x) dx. For bounding

purposes, it is useful to do the following transformation which “normalizes” C(h, k) to the circle K

https://en.wikipedia.org/wiki/Ford_circle
https://en.wikipedia.org/wiki/Ford_circle
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centered at 1/2 with radius 1/2.

z = −ik2
(
x− h

k

)
⇒ x =

h

k
+ i

z

k2
⇒ dx =

i

k2
dz.

For any point z on or inside K, the real part of z is less than or equal to 1 and the real part of z−1

is greater than or equal to 1. We need to find how the points of tangency bounding γh,k change as
a result of this transformation. We omit the proof of the following proposition.

Proposition 4.6. Let a/b, h/k and c/d be consecutive Farey fractions in FN . The transformation
to z maps α1(h, k) and α2(h, k) to

z1(h, k) =
k2

k2 + b2
+ i

kb

k2 + b2
,

z2(h, k) =
k2

k2 + d2
− i

kb

k2 + d2
.

The arc γh,k is mapped to the arc on K between z1(h, k) and z2(h, k) not including the origin.

Critically, as N groes large, for fixed h and k, we have that b and d grow large. Thus z1(h, k)
and z2(h, k) move closer to the origin. We can bound the distance between them and their distance
to the origin with the following proposition. We omit its proof.

Proposition 4.7. For the Farey sequence FN , we have

|z1(h, k)|=
k√

k2 + b2
|z2(h, k)|=

k√
k2 + d2

.

For any z on the chord between z1(h, k) and z2(h, k),

|z|<
√
2k

N
.

The length of the chord is less than 2
√
2k/N.

As a result, when we are integrating an error term over the arc between z1(h, k) and z2(h, k), we
can deform it to integrate over the chord between z1(h, k) and z2(h, k) and use the ML inequality.
Adding the transformation to z, we now have

p(n) =
∑
h,k

∫ z2(h,k)

z1(h,k)
F

(
h

k
+ i

z

k2

)
i

k2
e

(
−n

(
h

k
+ i

z

k2

))
dz,

=
∑
h,k

i

k2
e

(
−nh

k

)∫ z2(h,k)

z1(h,k)
F

(
h

k
+ i

z

k2

)
e

(
−inz

k2

)
dz.

But this brings up a new problem as we do not know what F (h/k+ iz/k2) is. Fortunately, F (x)
works well with Mobius transformations as we will describe in the next section. This will allow us
to transform F (h/k + iz/k2) into any expression of F which is easily approximated.
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4.2. Modular Functions and The Dedekind η Function. In this subsection, we provide an
rough overview of Modular functions to see how Mobius transformations affect F (x). See [1] for a
more complete overview. Define a Mobius transformation on a complex number z to be

z → az + b

cz + d
=

(
a b
c d

)
z.

where ad−bc = 1 and the matrix times complex number is shorter notation for the transformation.
Composing Mobius transformations is analogous to multiplying matrices, i.e., for Mobius transfor-
mations f(z) and g(z) with corresponding matrices A and B, we have f(g(z)) = A(BZ) = (AB)z.

Definition 4.8. The modular group Γ is the group of matrices(
a b
c d

)
,

where ad− bc = 1 and the operation is matrix multiplication.

Mobius transformations also map the upper half-plane to itself. To see this, notice that any
matrix can be expressed as the product of the generators

S =

(
1 1
0 1

)
T =

(
0 −1
1 0

)
.

The intuition for the generators is that starting with any matrix A ∈ Γ, we first make the bottom
left entry A22 small by multiplying by Sn (n can be negative in which case we are multiplying by
the inverse of S), but this leaves the first column of the matrix unchanged. We then multiply by
T to flip the columns and repeat the process making all of the entries smaller until the matrix
we are left with is the identity matrix. Undoing the operations, we recover A as a product of the
generators. The Mobius transformations corresponding to S and T are z+1 and −z−1 respectively,
both of which map the upper half-plane to itself. Thus any composition of the two will as well.

We can now define a modular function,

Definition 4.9. A function f is modular if it satisfies all of the following

(1) f is meromorphic in the upper half-plane.
(2) f(Ax) = f(x) for all A ∈ Γ and x in the upper half-plane.
(3) The Fourier expansion of f is of the form

f(x) =
∞∑

i=−m

aie(ix).

Modular functions have the following key property

Theorem 4.10. If a function f is modular and f has no zeroes, then f is constant.

The proof of this theorem involves looking at a shape called the fundamental region denoted RΓ

and showing that the number of poles and zeroes in RΓ is equal through the argument principal as
long as f is not identically 0. Because f(x)− c is a modular function for all c, if f is never 0, it has
no poles, so it cannot have any solutions for f(x) = c for all c unless f = c. Thus, f is constant.

An important function related to modular functions is ∆(x). Recall from the theory of elliptic
functions that an elliptic function f is a meromorphic function which is doubly periodic, i.e.,
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f(x) = f(x + ω1) = f(x + ω2) for some ω1 and ω2 and for all x. Let Λ be the set of integer
combinations of ω1 and ω2, and let Λ⋆ be Λ \ {0}. Elliptic functions can be expressed as a rational
polynomial in terms of

℘(z) =
1

z2
+
∑
ω∈Λ⋆

1

(z − ω)2
− 1

ω2
℘′(z) =

∑
ω∈Λ

−2
1

(z − ω)3
.

The Weierstrass ℘ function has the following Laurent expansion

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)E2n+2z
2n,

where

En =
∑
ω∈Λ⋆

1

ωn
.

The Weierstrass ℘ function also satisfies the following differential equation

(℘′)2 = 4℘3 − g2℘− g3.

where g2 = 60E4 and g3 = 140E6. In reality, g2 and g3 are functions of ω1 and ω2. The right hand
side of the equation looks like a cubic, so we can define its discriminant ∆(ω1, ω2) = g2(ω1, ω2)

3 −
27g3(ω1, ω2)

2. Notice that ∆ is homogenous in the sence that

∆(λω1, λω2) = λ−12∆(ω1, ω2).

Letting λ = ω−1
1 and ω2λ = x, we then have

∆(1, x) = ω12
1 ∆(ω1, ω2).

We replace shorten ∆(1, x) to ∆(x). Because the discriminant of a cubic is 0 when only it has
repeated roots, it turns out ∆(1, x) is never 0 since the z for which ℘′(z) is 0 yield distinct values of
℘(z) which is not obvious. Moreover, if complex pairs (ω1, ω2) and (ω′

1, ω
′
2) form the same lattice,

we have that g2(ω1, ω2) = g2(ω
′
1, ω

′
2) and g3(ω1, ω2) = g3(ω

′
1, ω

′
2), so ∆(ω1, ω2) = ∆(ω′

1, ω
′
2). It

follows that ∆(x+ 1) = ∆(x), and

∆

(
−1

x

)
= ∆

(
1,

−1

x

)
= x12∆(x,−1) = x12∆(x).

More generally, we have that

∆

((
a b
c d

)
x

)
= (cx+ d)12∆(x).

We now consider the Dedekind η function defined as

η(x) = e(x/24)
∞∏
n=1

(1− e(nx)).

It makes sense to consider this function as η(x) = e(x/24)/F (x). Notice that η(x+1) = e(x/24)η(x).
We also know that η(−1/x) =

√
−ixη(x) which can be derived through polynomial expansions

of log η(x). Notice the similarity in how Mobius transformations affect ∆(x) and how Mobius
transformations affect η(x)24. Thus, we consider f(x) = ∆(x)/η(x)24. We know that f is modular



CIRCLE METHOD 11

as it is meromorphic, it remains the same under composition with Mobius transformations, and
it satisfies the Fourier series condition. We also know it has no zeroes as ∆(x) is never 0. Thus,
∆(x)/η(x)24 is a constant. More specifically, it turns out that

∆(x) = (2π)12η24(x),

which can be seen by matching coefficients in the expansions of both sides of the equation. We
know how Mobius transformations affect ∆(x), so we can get a formula for how they affect η(x).

Theorem 4.11. If A =

(
a b
c d

)
∈ Γ, and c > 0, then

η(Ax) = ε(a, b, c, d){−i(cx+ d)}1/2η(x)

where

ε(a, b, c, d) = e

(
a+ d

24c
+

s(−d, c)

2

)
,

and

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.

Returning back to F (x) which is the generator function for the partition numbers, notice that
F (i∞) = 1. If we could somehow transform F

(
h
k + i z

k2

)
which is the main term in the integrand

used in the circle method into something of the form F
(
a
b +

ic
z

)
, then as z gets closer to the origin

F
(
a
b +

ic
z

)
becomes closer to 1. The expression we used to transform F

(
h
k + i z

k2

)
would then be a

good approximation for F
(
h
k + i z

k2

)
, especially since as N → ∞, we have that the chord between

z1(h, k) and z2(h, k) gets closer to the origin. This motivates the following theorem which translates
Theorem 4.11 by replacing F (x) with η(x) and using a particular Mobius transformation.

Theorem 4.12. Let h and k be defined as above. Let H be such that Hh ≡ −1 (mod k). Then

F

(
h

k
+ i

z

k2

)
= e(s(h, k)/2)

(z
k

)1/2
exp

( π

12z
− πz

12k2

)
F

(
H

k
+

i

z

)
.

Proof. Replace η(x) with e(x/24)/F (x) in Theorem 4.11 we get

F (x) = F (Ax)ε(a, b, c, d)e

(
x−Ax

24

)
{−i(cx+ d)}1/2

Using x = h/k + iz/k2 and

a = H, b = −hH + 1

k
, c = k, d = −h,

we then see

F

(
h

k
+ i

z

k2

)
= e(s(h, k)/2)

(z
k

)1/2
exp

( π

12z
− πz

12k2

)
F

(
H

k
+

i

z

)
.

■
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Letting ω(h, k) = e(s(h, k)/2) and Ψk(z) = z1/2 exp(π/(12z) − πz/(12k2)). Plugging this into
the circle method integral, we now have

p(n) =
∑
h,k

i

k2
e

(
−nh

k

)∫ z2(h,k)

z1(h,k)
F

(
h

k
+ i

z

k2

)
e

(
−inz

k2

)
dz.

=
∑
h,k

ik−5/2e

(
−nh

k

)∫ z2(h,k)

z1(h,k)
ω(h, k)Ψk(z)F

(
H

k
+

i

z

)
exp

(
2nπz

k2

)
dz.

4.3. Splitting and Bounding the Integral. Split the integral into

I1(h, k) =

∫ z2(h,k)

z1(h,k)
Ψk(z) exp

(
2nπz

k2

)
dz,

I2(h, k) =

∫ z2(h,k)

z1(h,k)
Ψk(z)

(
F

(
H

k
+

i

z

)
− 1

)
exp

(
2nπz

k2

)
dz.

Let us show that I2 → 0 as N → ∞. We will do this through the ML inequality. Note that
|ez|= eRe(z) and recall that for all z on or in K, we have Re(z) ≤ 1 and Re(z−1) ≥ 1.∣∣∣∣Ψk(z)

(
F

(
H

k
+

i

z

)
− 1

)
exp

(
2nπz

k2

)∣∣∣∣ ,
= |z|1/2exp

(
π

12
Re

(
1

z

)
− π

12k2
Re(z)

)
× exp

(
2nπRe(z)

k2

) ∣∣∣∣∣
∞∑

m=1

p(m)e

(
Hm

k
+ i

2πm

z

)∣∣∣∣∣ ,
≤ |z|1/2exp

(
π

12
Re

(
1

z
+

2nπ

k2

)) ∞∑
m=1

∣∣∣∣p(m)e

(
Hm

k
+ i

2πm

z

)∣∣∣∣ ,
≤ |z|1/2exp(2nπ)

∞∑
m=1

p(m)e

(
Hm

k
+ 2iπ

(
m− 1

24

)
Re

(
1

z

))
,

≤ |z|1/2exp(2nπ)
∞∑

m=1

p(m)e

(
2iπ

(
m− 1

24

))
.

Because n is constant in this scenario, the magnitude integrand of I2 is less than c|z|1/2 for some c.
On the path from z1(h, k) to z2(h, k), we have that |z| is at most

√
2k/N, so the integrand is less

than c21/4(k/N)1/2. The length of the path is less than 2
√
2k/N, so multiplying the two, we have

|I2(h, k)|< Ck3/2N−3/2,

for some constant C not dependent on N. Plugging this into the sum over Ford circles, we have∣∣∣∣∣∣
∑
h,k

ik−5/2ω(h, k)e

(
−nh

k

)
I2(h, k)

∣∣∣∣∣∣ ≤
∑
h,k

Ck−1N−3/2 = CN−1/2.
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Therefore,

p(n) =
∑
h,k

ik−5/2ω(h, k)e

(
−nh

k

)
I1(h, k) +O(N−1/2).

We just need to find I1 now. We provide the main steps and tools needed as described in [1].
Through an analogous process of bounding, we can find that

p(n) =
∑
h,k

ik−5/2ω(h, k)e

(
−nh

k

)∫
K
Ψk(z) exp

(
2nπz

k2

)
+O(N−1/2).

Where the integral is done aroundK in the clockwise direction. Using the theory of Bessel Functions
and taking N → ∞, we then have

p(n) =
1

π
√
2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24

 ,

where

Ak(n) =
∑

0≤h≤k
(h,k)=1

e

(
s(h, k)

2
− h

k

)
.

Thus, we now have an infinite series for the partition function.
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