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Abstract

This paper presents an introduction to the elementary foundations of Nevanlinna Theory, assuming only a background in complex
analysis and calculus. We define the Nevanlinna characteristic functions and establish the First and Second Main Theorems. These results
are then used to derive the Picard Theorems. Beyond the foundational theory, we explore applications of Nevanlinna Theory in analytic
number theory and differential equations, and conclude by discussing several significant open problems in the field.
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1 Motivation

For a polynomial of degree d, the Fundamental Theorem of Algebra tells us that for any nonconstant polynomial p(z) € C[z], p(z) = a
has exactly d solutions counting multiplicities. In particular, a non constant polynomial takes on every value in C at most d times.
Furthermore, the growth of a polynomial is also determined by its degree, and we have

max |p(z)] = O(R™) (R — o0).

|z|[<R
Clearly, for a polynomial, the distribution of zeroes, the general distribution of values, and the radial growth of the modulus are all closely
linked. However, entire functions behave very differently. For instance, consider the function e®, which never attains 0 but attains every
other value in C infinitely many times. Additionally, the modulus grows with O(e”#), which differs from the growth of polynomials.
In 1879, Emile Picard proved that any non-polynomial entire function f : C — C assumes every complex value, with at most one
exception, infinitely often (Picard’s Little Theorem). Although Picard’s result is a striking classification, it does not distinguish functions
of different order in terms of how “rapidly” or “densely” its values are taken.
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To appropriately study the value distributions of meromorphic functions, we need to rely on analog to degree for polynomials. This is the
contribution of Nevanlinna’s characteristic function, T'(f,r) := N(f, 00, 7)+m(f, 0o, 7). The results of Nevanlinna theory follow from
these more general concepts of growth and counting, and thus provide an elegant “value-distribution theory” for meromorphic functions.

2 The Poisson-Jensen Formulas

Nevanlinna theory is underpinned by the Poisson-Jensen formula, which forms the foundation for the construction and study of the
Nevanlinna functions. The first of these, the Poisson formula, arises naturally when considering the solution to the Dirichlet problem on
acircle'.

Theorem 2.1 (Poisson formula). Let u be harmonic in the open disk D(R), R < oo and continuous on the closed disk D(R). For any
fixed point z in the disk,
do

u(z):/o P(z, Re)u(Re?) — 5

where P(z,() = =N (%) denotes the Poisson kernel.

Proof. Define the automorphism T'(w) := %. Note that z = T'(0). Then, applying the Gaul mean value theorem, we have

u(z) = u(T(0)) = /O w(T(Re™)) g = Z{R w(T(C)) zjlé(.

Let w = T'(¢). Then, one can easily show

(€, X )i

w z2—C R2-%C) ¢
When |{| = R, we have

) & _p, g

(=) € -reot

We can re-parmeterize with w = Re’? and recover

do

u(2) :/0 P(Z,Rew)u(Rew)ﬂ.

O

Remark 2.1. As constructed, we can extend the boundary conditions of u parameterized by u(Re’®) continuously to the interior of
|z] = R. This solves the Dirichlet problem for circles.

A straightforward consequence of the Poisson formula is Poisson-Jensen formula.

Theorem 2.2 (Poisson-Jensen Formula). Let f # 0,00 be a meromorphic function on D(R). Let ay, ..., a, denote the zeroes of f
in the open disk D(R) repeated according to multiplicity, and let by, ..., b, denote the poles of f in the open disk D(R) also repeated
according to multiplicity. For any z € D(R) that is not a zero or pole of f, we have

q R2
log | f(z \—/ P(z, Re') log| f( Re‘g\——ZIOg Zlog )
o . o0 —Cz
:/0 P(z, Re') log|f(Re 9)\%— Z (ord, f)log R( —l

CED(R)

I The Dirichlet problem asks for a function which solves a given partial differential equation, typically taken to be the Laplace equation, in the interior of a region that
takes prescribed values on the boundary of the region. For complex functions, this is equivalent to the function being harmonic in the region and its boundary.
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Proof. Let

R? —a,z
(R(Z - ai))
: R2—b,z\

In other words, we multiply f by Blaschke products to move all the poles and zeroes of f outside of D(R). Hence, log | F'(z)| is harmonic
on any open neighborhood of D(R). The result follows by applying the Poisson formula to log | F'(z)]|. O

<.
|l "3
—

Remark 2.2. The logarithm is an important quantity when studying Nevanlinna theory. One function of the logarithm is to control or
smoothen the growth of the modulus of f. However, the more useful property of the logarithm is that it allows us to separate the zeroes
and poles of f(z) into summations as in 2.2, which one can interpret as counting zeroes and poles. This hints at a natural connection
between the quantity log | f(z)| and the value distribution of f.

Since the logarithmic derivative arises frequently in the study of Nevanlinna Theory, it is worth restating the Poisson-Jensen Formula in
terms of logarithmic derivatives.

Theorem 2.3 (Poisson-Jensen Formula for Logarithmic Derivatives). Let R, f, a;, and b; be as in Theorem 2.2. Then, for all z not
a zero or pole of f,

o e i0y 40
_/0 mlogv(]{e )2

+Z(R2—az - ) i( —bz Z—lbi)'

?

Proof. We merely take the derivative of Theorem 2.2. Note that

log | £(2)] = 3 llog (=) +log /(2]

by anti-holomorphicity 2. Then, by the Cauchy-Riemann equations,

f'(z) _ d d
=—1 =2log —1 .
7o)z oef (2) = 2log —— log | f(2)|
Now taking the derivative of 2.2 and applying this, we can switch the derivative and the integral by the Dominated Convergence Theorem.
The result follows. O

3 The Nevanlinna Functions

We start by defining the unintegrated counting function n( f, a, ), which we simply define to be the number of times the function f
attains the value a in D(R). We define n(f, a,r) with D(R) so that n(f, a,0) is well defined. However, there are several issues with
the n function. For one, it is not a continuous function in r, because it is a discrete function, and for two, it is difficult to integrate into
analytic quantities such as those that appear in 2.2. As such, we define the integrated counting function.

Definition 3.1 (Integrated Counting Function). Let f : CP! — CP!. Let n be the unintegrated counting function as defined above.
Then, for any a € CP! and (r > 0) € R,

N(f,ar) = nfa.0)logr + [ [n(f.a.0) = n(f,a.0) 5
0

It is not at all immediately obvious that N (f,a,r) is a natural counting function. However, we can remark that it is an improvement on
n(f,a,r) in that N(f,a,r) is a continuous function in r, and its growth is moderated by the presence of the logarithm. Furthermore,
this definition translates well to the language of the Poisson-Jensen formula, as demonstrated below.

2This can also be verified elementarily.
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Corollary 3.2. Let f be meromorphic on D(R) with zeros ay, ..., a, and poles by, ..., b, in the open disk D(R), each counted with
multiplicity. Then for any z with |z| = r < R,

1 3 A P N
Zog Z—CL Zog ) (f,OO,T)_ (f,o,7”>~
Proof. Write p; = |a,|, o; = |b,|. One checks directly that, for [z| = r,
log | B>~ @i _/ dt / dt RQ—sz /’”dt_/Rdt
& R(z—a;)| (z—b;) ot ot
Hence
P 2 = q 2 _ 7 r R R r
R2 —a. R*—b, t t 0,t 0,t
Zlog a; 2 _Z]Og ]Z — / Tl(f,OO, >dt—/ n(f,OO, )dt _ / n(f7 ) )dt—/ n(fa ) )dt )
i R(z — a, — R(z—b, t t t t
1= 1 7j=1 J 0 0 0 0

Applying the definition of N, we can write

. R
/E@Eﬁm_/ 1290 4y = N (f100,1) — N(f.00 R),
0 t 0 t

R T
/zﬂﬁﬁm_/lﬂﬁﬂm:Nmam—Nm&ﬁ
b t

4
0
Since f has no zeros or poles on |z| = R, one checks N(f,00, R) = N(f,0,R), and hence their difference cancels. Thus,
1 R2 —b;z

Z 1og Z log

= N(f,00,7) —N(f,0,7).

RG]

Corollary 3.3. Let f # 0, 00 be meromorphic on D(R). Then,

1 [ ,
log |ilc(f,0)] = o / log | f(re?®)|dO + N(f,o00,7) — N(f,0,7),
T
0
where ilc(f, 0) denotes the initial Laurent coefficent of f about z = 0.

Proof. Apply the Poisson-Jensen Formula to the function F(w) := f(w)w 9 /), and expand log |F(0)|. The result follows from
3.2. O

To define the mean proximity function, we must first introduce the Weil functions. Given a pointa € CP!, a Weil function is a continuous
map A, : CP! \ {a} — R, which has the property that on every open neighborhood of a, there is a continuous function « such that

A (2) = —log |z —a| + a(z).

At z = oo, we take the local holomorphic coordinate % Weil functions have two important properties that we can exploit. The first is
that the difference between any two Weil functions is a continuous function, and on the compact space CP, this forces the difference to
be bounded. Secondly, the Weil functions grow large exactly when z is close to a, and thus, we can use the size of the Weil function to
estimate the proximity of z to a. For a meromorphic function f(z) on D(R), A, (f(z)) will tell us the proximity of f(z) to a. Thus, we
can define a mean proximity function by

dé

27
mif )= [ h(sret)
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As it turns out, most results in Nevanlinna theory do not depend on the choice Weil function, instead, we tend to think of m as depending
only on a and writing m(f, a, ). However, we wish to choose a Weil function to act as the default in the definition of m(f, a,r). One
of the simplest functional choices is the one by R. Nevanlinna himself, who defined

logh = if a,z+# oo,

Ao(2) = L el and A, (0c0) =0 if a# 0.
log"|z|] if a=o0,

This leads to the definition of the analytic proximity function.

Definition 3.4 (Analytic Mean Proximity Function). Let f be meromorphic on D(R), R < co. Then,

1

2m N - do
m(f,oo,r) = 10g ‘f(re )‘ %7
0

dé

— if a# oo and
27

2w
m(f7 a, T) = / 10g+
0

where log” = = max(log z,0).

When looking at things from an analytic perspective, we find it convenient to use Nevanlinna’s choice of Weil function as above.
However, this function does not lend itself naturally to a geometric perspective, so we construct another Weil function based on the
geometric structure of CP!.

Let z; = r;€"1 and z, = r,e'%2 be two points in C. We use stereographic projection to identify the complex plane with the sphere of
radius % centered at the origin in R3. Let ( pj>0;,¢;) be the cylindrical coordinate representations of the images of the z;, then we have
by projection

T 7‘]2- -1

L L R
Pi = 1—1—7“]2 G 4(1—&—1“?)

The square of the standard Euclidean distance in R? is given by
24 p2 —2ppycos(fy —0,) + 2+ 2 —2¢,C,.
P1 T P2 — 2P1P2 17— Y2 1 2 162
Rewriting with the appropriate transformations allows us to define the chordal distance between two points in C to be

EN —Z'2|2
(L4 |21 [2)(L + |25]?)

||Z1a22||2 =

One can check that the chordal distance satisfies the triangle inequality and is a valid metric. We can continuously extend the definition
of the chordal distance to CP! by

1
2 _ .
le.oel® = T

Hence, we define the geometric Weil function by A := —log ||z, a||.

Definition 3.5 (Geometric Mean Proximity Function). Let f be meromorphic on D(R), R < oo. Then for all » < R,

2m ) do
in(fra,r) = [ ~log|Lfre)all 5.
b ™
The final of the Nevanlinna functions is the characteristic function, which we simply define by combining the defintions of the counting
function and proximity function.

Definition 3.6 (Nevanlinna Characteristic Function). Let f be meromorphic on D(R), R < co. Then, for all » < R the analytic
characteristic function is defined by
T(f7a7r) = N(f’a7/r> +m(f7a7,r)’
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and the geometric characteristic function is defined by

f(f,a,?‘) = N(f,a,r) +m(f,a,r) J’_Cfmt(fva)a

where cy,,, 1s a constant not depending on r defined in section four.

4 First Main Theorem

The first truly remarkable result of Nevanlinna Theory is the First Main Theorem. In its essence, the First Main Theorem states that
the Nevanlinna characteristic is (essentially) invariant of the value of a. Thus, the characteristic is the generalization of the degree of a
polynomial for meromorphic functions that we require to properly study the value distribution of meromorphic functions.

The adept reader might remark that the Poisson-Jensen formula is in many ways already invariant of the value of a, at least in structure.
In fact, as we will see, the First Main Theorem is nothing more than a formal repackaging of the Poisson-Jensen formula.

Theorem 4.1 (First Main Theorem). Let a € CP!, and let f # a, 00 be a meromorphic function in D(R), R < oo. Then,
N(f,a,r)+m(f,a,r) =T(f,r)+O(1),
where T(f,r) :== T(f, 00, 7). Alternatively, for all a,b € CP?,

T(f,a,7)=T(f,b,r)+ O(1).

Proof. Apply3.3toh = f% Note that & has zeroes at the poles of f and poles at the a-points of f. We have

1 27 ) 1 27 )
log|ilc(h,0)|:%/ 10g|h(rew)|d9+N(h,oo,r)—N(h,O,r):—%/ log |f(re?®) —aldO + N(f,a,7) — N(f,o00,r).
0 0

Note that logx = log+ x— log+ i Rearranging and expanding, we have

1 27 . 1 2m 1
N(ﬂa,r)—N(ﬂoom):%/ 10g+|f(7”€”9)—a\d9—§/ 1°g+md9'
0 0

The first integral on the right hand side is m(f, 0o, ) + O(1) 3, and the second is simply m(f, a, ). Hence,
N(f,a,r) = N(f,00,7) = m(f,00,7) —m(f,a,7) + O(1),

from which we recover
O

Remark 4.1. The choice to define T'(f,r) with a = oo is merely convention. Similarly, we define N(f,r) := N(f,o0,r) and
m(f,r) := m(f,oo,r), for notational convenience. We also note that the First Main Theorem holds for general Weil functions, but
these are typically with poor error terms.

A natural question is whether the O(1) error term can be made explicit. In fact, one can achieve equality using the geometric functions.
This is a significant advantage over the analytic functions, as in those cases, we can at most say the difference is bounded.

Theorem 4.2 (Geometric First Main Theorem). Let a € CPY, and let f # a, 00 be a meromorphic function in D(R), R < occ. Let

3This follows from elementary inequalities. In particular, one can use

log" [f —a| <log" |f| +log" |a| + log2.
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Cimt(f, @) be defined by

log [ £(0), al| if  f(0)#a
Cime(f,a) = log|ilc(f—a,0)\—|—2log\|a,oo\| if f(O):a,a#OO
—log|ile(f,0)] if f(0)=a=o

Then, for any a,b € CP1, . i
T(f,a,r)=T(f,b,r).

Proof. The proof is a routine application of definitions. By the definition of 72 and 3.3,
m(f7avr) - T;’L(f, OO,’/‘) = N(fa OO,T) - N<f7a'a T) - 10g|11C(f - G,OM - lOg ||CL, OOH

The result follows by choosing the appropriate constant to force cancellation. O

The First Main Theorem is in essence a generalization of the Fundamental Theorem of Algebra. If it were true that N(f, a,r) were
essentially independent of a, we would have our generalization, however, as we have seen, this cannot possibly be true. But the First
Main Theorem does tell us that the quantity m(f, a,r) + N(f,a,r) does not really depend on a. Our generalization thus measures the
growth of the set of points where f is equal to a along with the set of points where f is “close” (in proximity to) a. Also note that
m(f,a,r) is always non positive. Thus, the First Main Theorem gives an upper bound on the number of times f attains a. The more
difficult lower bound relies on the Second Main Theorem, and requires further machinery.

Those familiar with Picard’s Great Theorem will know that any non-constant meromorphic function on the complex plane can omit at
most two values in CP!. One might suspect that for most a, the counting function dominates the sum N(f,a,r) +m(f,a,r) *. This is
indeed the case, and we can prove deeper results along this line using the Second Main Theorem.

4.1 Some Elementary Computations With the First Main Theorem

Consider )
ZP + ap,12p7 -+ .. _|_ a’O

f(Z) = Czq+bQ_1Zq71 —|—+b0 )

where the numerator and denominator share no factors, and ¢ # 0. We have multiple cases depending on p and ¢q. Let p > ¢, then
lim, . f(z) = o0, so m(f,a,r) = O(1) for all finite a. The equation f(z) = a has p roots for all finite a, making N(f,a,r) =
plogr + O(1). Hence,

T(f,r) =m(f,a,r)+ N(f,a,r) = plogr+ O(1). (M

Similarly, f(z) = oo has q solutions, so N(f,c0,r) = glogr + O(1). And by the First Main Theorem, we have
m(fa OO,?") = (p - Q) IOgT + O(1>

The cases p = g and p < q are left as exercises to the reader.

Now consider f(z) = e*. We can easily compute m( f, 0o, r). Note that

da—/grcosedo—r
o ) . or T

2

10

2m
m(f,o00,r) :/ log™ [ere
0

It is clear that N(f, 00, 7) = 0, thus T'(f,r) = r/m. By the First Main Theorem, T'(f,a,r) = r/7m + O(1).

In general, note that if a = 0, 0o, then N(f, a,r) = 0. We can also compute

3m/2
a0 —/ (—1"0089)%::
A 2 T

o L =

1

eret?

21
m(f,0,r) = / log*
0

4A good example of this is the function eZ. For this function, the mean proximity function is only significant near at 0 and co. In all other cases, the counting function
dominates.
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Thus, for a = 0, 00, we have N(f,a,r) = 0 and m(f,a,r) = r/m; for all other a € C, we have m(f,a,r) = O(1) and N(f,a,r) =
r/m + O(1). To see this, we can uniformly bound m. Note that

do S 1 do o 1 do

— < lo —_—— | — = lo —_— | —.

2m /o ¢ <|6re79 - |a|> 2m /o ¢ (6”"5" |a|> 2
Now fix ¢ € (0,7/2) and split the integral as

27
1 de 1 de 1 do
log" ([ ——r—— | &2 = 1+7i/1+77.
/O 0g <€rcos0_|a|>27.r /9W|<6 og <6rcos9_|a|>2ﬂ_+ 0_nlze 0g eTCOSO—‘CL| 1t

In the second region, cos ) < cos(m — &) = —cose < 0,50 €7 < 7€ 3 ) as r — oo, and hence 1/(e"*? — |a|) is bounded.
In the first region, the length of the arc is 2¢, so we bound

1 2 1
/ log” <ﬁ> d—e < = log” () .
9—r|<e ercst —|a| ) 2 — 2m e — |al

This is O(e - ), but since ¢ is arbitrary, we can choose ¢ = 1/r so the whole integral is bounded by O(1). Thus, m(f,a,r) = O(1) as
7 — OQ.

1

—_—
ere”’ —a

27
m(f7 a, T) = / 10g+
0

Ironically, we can also use the First Main Theorem to provide an alternate proof of the Fundamental Theorem of Algebra.

Theorem 4.3 (Fundamental Theorem of Algebra). Let p(z) € C[z] be a non constant polynomial. Then, p has at least one root in C.
Proof. Assume for the sake of contradiction that p has no roots >. By equation 1, T'(p,a,r) = dlogr + O(1), where d is the degree

of the polynomial. Take a = 0, so T'(p,0,7) = dlogr + O(1). Now, note that N (p,0,r) = 0 by hypothesis. Further note that [p(z)|
attains a minimum M for some finite r by the Extreme Value Theorem. Thus,

2
do 1
0,r)= [ log" | — <log" —.
m(p,0,7) /O 08 | ooy | 3 <108 37
Hence, m(p,0,r) = O(1). By definition, T'(p, 0,7) = m(p,0,r) + N(p,0,r) = O(1), which contradicts the growth of T". O

4.2 Growth Order

In order to study these deficient values, we need to define the order of a function f:

Definition 4.4. The order of an entire function f is defined as

) log" T(f,r)
=1 - )
p(f) imsup —=

S Logarithmic Derivatives

A meromorphic function g is a logarithmic derivative of some meromorphic function f if

_d _f
9—@10g(f)—7~

Logarithmic derivatives are a significant point of interest in value distribution theory. Growth of logarithmic derivatives is elementary
when f is a polynomial; f” has a smaller degree than f, so |f'/f] — 0 as |z| — co. This behavior cannot be naively generalized to
all meromorphic functions. If f = e, then |f’/f| = 2z — oo as || — co. However, the growth rates of f and f’/f are still wildly

different. In particular, the rate at which |’/ f| approaches infinity is slow compared to that of 7'( f, r). This result can be generalized
to all meromorphic functions in what is known as the Lemma on the Logarithmic Derivative, which states that if f is a meromorphic

SNote that this forces p(0) # 0.
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function, then m(f’/f, oo, r) cannot approach infinity quickly compared to the rate at which T'(f, ) tends to infinity. While the result
of the Lemma on the Logarithmic Derivative is fairly intuitive, the proof is very technical. The aim of this section is to prove the Lemma
on the Logarithmic Derivative. Next section, we will prove the Nevanlinna Second Main Theorem using using the lemma.

Lemma 5.1 (Smirnov’s inequality). Let R < oo, and let F' be analytic in D(R). For 0 < 6 < 2m, define u(0) by

uw(@) = liminf |F(z)].

z—Re'? |z|[<R

If either R(F(z)) or 3(F(2)) has constant sign, then for any a with 0 < a < 1, we have
1 2m

Ta
« < a
27 ), u(0)*df < sec(—2 )| F(0)]

Proof. Without loss of generality, assume that SR(F'(z)) > 0 for all |z|] < R. Since F' is non zero in D(R), we can fix a choice of
arg(F'(z)) such that | arg(F(2))| < 7 for all || < R. Thus, the function

F(2>a — ‘F(Z) |aeia arg(F'(z))
is analytic in D(R), and it follows that 53 (F'(z)®) is harmonic. Since

R(F(2)%) = |F(2)|* cos(aarg(F(z))) > |F(z)\“cos(%),

we have
1

27

sec(%")

™

/ 7 Pre®)|= o < / R (F(rei®)) b  see( T YR(F(0)°),
0 0 2

where the last line follows from the Gaull mean value theorem. Therefore,

1 2

- 0\ |« < g [e%
37| 10NN 00 < seeGIFO)

The final step follows from a lemma in measure theory which we shall present here without proof.
Lemma 5.2 (Fatou’s Lemma). Let {f, } be a sequence of nonnegative measurable functions on an integrable measure space. Then,

/liminffn dp < liminf/ fndu
n—oo

n—oo

Fatou’s lemma gives us

1 27 1 27

2 ), =) lim inf | F(re'?)|

r—R

o 1 2 )
9 < liminf2—/ |F(re'®)|* df < sec(%)|F(0)|a

r—R ™ Jy

as desired.

O

Lemma 5.3 (Kolokolnikov’s inequality). Let R < oo, and let {c;,} be a finite sequence of complex numbers in D(R). For §,, = +1,

define
)
H(Z) = Z > 7k6k

k

Then, for any o € (0,1) and for 0 < r < R,

27 o
L Hrei®)|e do < (2422 sec( %) (’M)

27 Jy r
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Proof. Let ¢, = argcy, p,, = 9, cos ¢y, and g, = 9, sin ;.. We write

ei‘Pk ei‘pk
Hiz)= Y. 7P € Pk

z—C zZ—C
leg|>7,pi>0 k leg |>7r,pr <0 k
T __plp
o <o —<py
zZ—C zZ—C
[e[>7,p>0 k e [>7,p4, <0 k

5 5
+Z_—’“%+Zz_—’“ck

legl<r,6p=1 “ leg|<r,d,=—1

= Fi(2) + Fy(2) + F5(2) + Fy(2) + F5(2) + Fg(2).

Since |¢;,| > rand |z| < r, %(%) < 0, and thus F}, F,, F5, F, all satisfy the assumptions of 5.1. Therefore, for j = 1,2,3,4, we
have
1 [ am
0\ | «
277/0 [y (rei®)] o < sec (5 ) |F;(0)]
[e%3 o 1
< sec(T) |F,(0)] (Z |Ck|>
leg|>r R
H —n(H “
< sec (%) ‘FJ(O)|C¥ <n( 7007R) n( ,OO,T))
T

Note that when |z| = r, we have

lex|<r lex|<r
Define
~ T
5(2) = 5= -
leg|<r,0p=1 TR
Since |c;,| < rand |z| < r, we have R(r? — ¢,,2) > 0, we can apply 5.1 to
, - T
|F5(re)] = |F5(2)| = I R=——
leg|<r,0,=1 - Ckrew 7

which gives
1 [ o ia QTN ary (n(H,o0,r)\"
o A |Fy(rei?)|* df < sec (7) |F5(0)]* < sec <7> <T>
Similarly, we have

1 2w

n(Hpom))a

r

AYE %
| Fy(re’?)] dﬁgsec( 5 > (

2 ),

Now, note that if dj are non-negative real number and 0 < o < 1, then

10
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and thus we conclude that

217r/02ﬂ|H(r619 |*db < ;i/% Fi(re® |O‘d9<2sec( ;) (TL(H’TOO’R))Q (2 <1—m>a+ (7%)“) .

To finish, note that if 0 < d < 1, then

(1 _ d)a + d° < 2170¢7

SO

o [ <2 () (M) <2 (1- 2o )" (i g)“)
< (2422 sec (%) <T

as desired. O

5.1 The Gol’dberg-Grinshtein Inequality

Now that we have the necessary tools, our aim is to bound the integral of |f’/f|* over the circle of radius r. This is done by the
Gol’dberg-Grinshtein estimate, which bounds the integral in terms of m(f, [0] + [00], s) and n(f, [0] + [00], s), where s > r and

m(f7 [O] + [OO],S) = m<f707$> +m(fa OO,S),
n(f,[0] + [o0], 8) := n(f,0,s) + n(f,00,s),

and similarly

N(f,[0] + [00],8) := N(f,0,5) + N(f,o0,s).

Lemma 5.4 (Gol’dberg-Grinshtein). Let f be a meromorphic function on D(R), R # 0,00, and let 0 < o < 1. Then, forr < s < R,

we have
1 /277
27 Jy

Proof. Let ay,...,a, and by, ..., b, denote the zeroes and poles of f in D(S) counted with multiplicity. From 2.3 we have that for
z# a;,b;,

£ (re®)|”
f(re)

. ( Sl [0]+[m],8))a+(2+z3a)sec (%) <W>a

r(s—r) r

-5 e (2 20) -5 (0 )

As aresult,

11
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()] 1 /2“ 2s , P g b LA
—| < — ———log|f(se*?)|dp + —_— = — 1+
f(z) 2 Jy  |set — z|? ; s?—a;z ; 52 —b;z ; z—a,
For 0 < o < 1 and for positive real d;, we know that
(3] <3
J J
Applying this to our current inequality gives us
f/(Z) @ 1 /27r 2 . « p aj q Bj « p
— <[ = —— 1o se*¥)|d + — — = +
f(z) 21 Jy  |set — z|? gl f( N dip ;SQ—ajz ;SQ—Z)J»Z ;Z—a

Now, we let z = ¢’ and integrate with respect to , giving us

1 2w 1 27 1 2 9 ' «
1 46 < — 12 N R
27T/0 - 27‘(‘/0 (277/0 |seiv — 2|2 og|f(se*?)] ‘P)

)|
f(z)

Al a q gj «
+— B — do
1 2w | P 1 q 1 «
— — do
+27r b Z;z—aj 22 bj
=L +1L,+1;

We can bound /; by swapping the order of integration.

A

e < L " 1/%2810 |f(se™®)| dy | d6
Yo7 o 2 Jy  |set — z|? & 7

2 27 1 27 1
= — — ———db | |1 | dep.
2w /0 (27T /0 |sete — re’e|2 ) | og|f(se )H v

Now, we have the following as a result of the Poisson formula, 2.1, applied where u = 1.

I /% set? P = Jre
27 Jy |sete — reif|2

Applying this to the above inner integral gives us

1/2” 1 go— 1
21 Jy  |sete —rei®|2 7T 52 —p2

Furthermore,

12
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| (selw>

|

1 27 ) 1 27 ] 1 27
o | loglrtset®)ll do= 5 [ log" (59| i+ 5 [
T Jo T Jo T Jo

=m(f,[0] + [o0], 5).

Thus, since s +r > 2r,

b (G2m( 0+ el 9) < (

§2—r

Now, we estimate /,. For each zero a; and each pole b, let (;; = R(a;) and 0, ; = R(b;). Similarly, let (; = T(a;) and 1,; = T(b;).
Now we have

P — q n
PN b _ 5 ST ™
2 _ = 2 _ 7. 2 _qa. 2_p.
— 5 a.z — g bJZ s a:z 771,-<05 bJZ

¢1;>0 J

—M;
(2 Z)

J

_ 24
2 _p.
1oy <0 5 bz

(z =

]‘20

(2) = )*Zhs( ) + ihy(2).

As aresult,

Since both R (s> — a,re™) and R(s* — b,re’®) are positive, we apply 5.1 to get

2c 4

s
7@)12 < 52 " |hy(0))°
j=1

sec (& J
SIS %) N (z G+ %) )
Cr;>0 Mg <0 Cr; <0 Mg =0

2

2 « (e
QZ<(21+ )+<Zl+21)>,
k=1 >0 71 <0 (<0 71y =0

where the last line follows because [/, [7;,;] < s. Now, define a new function v, as the following.

Zij>0 1+ an]’<0 1
W O ol

IN

IN
»

13
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Thus, we have

¢2(<Zl+2ﬁ>+(Zﬁ+§:g)-ﬁEXWmM+MMW+M—wWﬂMHM@%,
k=1

Cr;>0 M3,5<0 Cri<0 M3,5=0

and therefore,

Thus,

S

e () (L

r

zzzﬂsm(i;><nU%W%+bdﬁo>a

since s > r. Finally, it remains to estimate I5. We apply 5.3 to D(.S), giving us

™

Iy < (2+22%)sec (%) (

r

Mﬁm+wwva

Combining the estimates for I, I, and I5 gives us

1 /277
27

)|
(z)

A6 < I, + I, + I,

g(sMﬁM+@m0a

r(s—r)

«
22704 <
+ sec >

+ (24 227%) sec (a—

S

( Mﬁm+mmﬂa

r(s—r)

2 23—a (7
+(2+ ) sec 5 "

as desired.

O

Remark 5.1. The treatment of Gol’dberg Grinshtein below leaves the constants on the right hand side independent of f. In this case, we
want to bound the left hand side using the Nevanlinna characteristic function 7'. Unfortunately, due to the use of the first main theorem,
it is thus necessary to give the assumption F'(0) = 1 or to allow the right hand side to depend on f. In this case, we choose to let the

right hand side depend on f to alleviate restrictions on f.

Theorem 5.5. (Gol’dberg-Grinshtein) Let f be a meromorphic function in (0 < R < 00), and let 0 < o < 1. Then, for all vy < r <

p < R, we have

14
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1 21| s i0 @
o /0 if((:;g)) degcgg(@(r(pp_ 7«>> (2T(f,p) +B1)°,
where
By = By (f.70) = | ordy f]log” % + Jlog | ile(£.0)]| + log2
and

Cppl@) = 2%+ (8+2-2) sec ()

Proof. Define s := (r + p)/2. Then, 5.4 gives us
TS e | s : n(f,[0] + [o9] 5) | *
Z < (T( m(f,[0] + [oo},s)> (24 25 sec(am/2) ( )

fre®) | 2r s—r) r
Note that since s —r = p — s = (p — r) /2, we can write the following via elementary manipulation:

(03

S r+p 2p
N re—n i1

Using the definitions of the Nevanlinna functions together with the First Main Theorem, we see that

m(f,0,s) =T(f,0,s) — N(f,0,s)

1
< T(f,0,s) +max{0,ord, f}log" —
To

1
<T(f,0,s)+ max{0,ord, f}log+ - + |log |1c(f,0)|| + log 2.
0

Similarly, we can bound
m(f7 o0, S) < T(f7 00, S) + max{O, - OrdO f} 10g+(1/’f‘0),

and thus
m(f7 [O] + [00]75) = m(f,O,s) + m(f7oo75> < 2T<fv S) + Bl'

Furthermore, because p > s, we know that T'(f, s) < T'(f, p). Thus, the first term on the RHS of 2 is bounded by

» (;o0s) eru s

In a similar manner, we can estimate the second term on the RHS of 2 in terms of 7'( f, p). We have the following:

P
p—S

p 2
> L [ncr 01+ el

(N(f, 0] + [o0], p) + | ordy f1log" 1)
dt
0

n(f, [0] + [oc), s>%

A

15
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As a result of the First Main Theorem, we have the following.

(£,00]+ [ ) < 2 (N2, 10+ 501, ) + fondy o )

2p
p—r
Thus, the second term on the right in 2 is bounded by

p
r(p—r)

<8+2-2a>sec<aw/2>( ) (T (f.p) + B

as desired. Fixing a value for « lets us bound m(f’/ f, oo, r).

Corollary 5.6. Let f be a meromorphic function on D(R) where 0 < R < oo. Then, for all v and p such that vy < r < p < R,

7o) < og” (PELEDERDY

(=7

<log' T(f,p) +log" -

P +
W —+ 10g ﬂl —+ ng =+ lOg 2,

where

1 .
By = Bu(f o) = | ordy fllog" — + [log|ile(f,0)[[ + log2,
0

and ¢y, = ~logCy ()

Proof. As a result of the concavity of log™, we can remove it from the integral and then apply 5.5 for

“a0 1 2
— < — log+/
2 « A

< $10g+ C, () + log" P(Qz;(({)ai)ri 51)'

"o
2w

£ re?)
fre)

f(re®)
Fre?)

2m
mif'/foom) == [ tog’
0

We now apply the following identity.
log™(z +y) <log" z + log" y + log?2,
This gives us

+p2T(f,p) + By)
r(p—r)

log <log" T(f,p)+log" +log" B, + 2log2.

p
r(p—r)

The proof is completed by swapping é log™ C,y(a) with e,

16
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5.2 Proof of the Lemma on the Logarithmic Derivative

We state the following form of the Lemma on the Logarithmic Derivative from [CYO01].

Theorem 5.7. Let c,, be the constant from 5.6, and let f be a non-constant meromorphic function on D(R), R < oo. Assume that
T(f,ry) > eforsome 1y, and that in the case R = oo that ry > e. Let

1 .
B = Bi(f,r0) = |ondy fllog" — -+ [log] le(£,0)|| + log2,
0

and let ¢ be a Khinchin function.

Let ¢(r) be a positive, nondecreasing, continuous function defined for ry < r < oo. Then, there exists a closed set E of radii such that

dr
A % < Qko(w) + 1,

and such that for all r > 1, outside of E, we have

T
m(f'/f,00,r) <logT(f,r)+ log 7747” +¢gg +log" B, + 3log2 + 1.

Moreover, if ¢(r) < r, then

and for all r > r outside of E, we have

T
m(f'/f,o00,r) <logT'(f,r) +log7r’r +cyy +log" By +3log2+ 1.

Note that this deviates significantly from the original description of the Lemma on the Logarithmic Derivative, which stated that the
growth of m(f’/ f,r) was bounded by the growth of T'(f, ). But this theorem statement is equivalent to this description, as the RHS of
both inequalities involving m(f’/ f,r) are dependent on T'(f, ) up to a constant.

In order to prove the Lemma on the Logarithmic Derivative, we will prove a different lemma on the growth of [ ﬁ which can be

r)?
applied in tandem with 5.6.

6 The Second Main Theorem

The most important consequence of the lemma on the logarithmic derivative is the Nevanlinna second main theorem, which is arguably
the central result of Nevanlinna theory as a whole. The second main theorem can be seen as a generalization of Picard’s little theorem;
it bounds the growth of a meromorphic function f by a measure of the amount of times f takes on a finite collection of complex values.
This section aims to prove the second main theorem via the lemma on logarithmic derivatives, vaguely following the original proof by
Rolf Nevanlinna.

First, we restate the lemma on the logarithmic derivative and prove a corollary.

Theorem 6.1 (Lemma on the logarithmic derivative). Let f be a nonconstant meromorphic function. Then

m(f'/f,r) = o(T(f,r))

outside of a possible exceptional set of finite linear measure. Furthermore, if f has finite order, then
m(f’/f,r) = O(log(r)).

17
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Corollary 6.2. Let f be a nonconstant meromorphic function and k be a positive integer. Then

m(f®/f,r) =o(T(f.1)),
T(f*,r) < (k+1T(r, f) +o(T(f,7)).

Proof. We proceed via induction. When k = 1, the first claim is just the the lemma on the logarithmic derivative. So, our inductive
assumption is that

m(f*/f,r) <m(f,r) +m(f*)f,r) =m(f,r) +o(T(f,r)).

The meromorphic function f has a pole of order p > 1 at z, if and only if f* has a pole of order m + p > m + 1 at 2, so it follows that
n(f* r) < (k+ 1)n(f,r). Therefore,
N(f*r) < (k+1)N(f,7),

and thus,
T(f*r) < (k+1)T(f,7) +o(T(f,r)),

which is equivalent to the second claim in the corollary. It follows that
m(f* [ ) = o(T(f!, 7)) = o(T(f, 7)),

and therefore,

m(fF for) Sm(fA fRr) + m( R for) = o(T(f.r) + o(T(f,r) = o(T(f,r)).

We are now able to state and prove the second main theorem. First, note that

n(f,r) = Z max{ord:(1/f), 0},

CeD(R)

as both sides give the number of poles f has within the disk of radius . Now, consider the function

Npam (f57) 1= 20(f,7) = n(f',r) + n(1/f' ;) = D ve(f),

CeD(R)

where this
ve(f) = 2max{ord.(1/f),0} — max{ord:(1/f"),0} 4+ max{ord.(f"),0}.

The purpose of the function v(f) is to count high-multiplicity (ramified) terms. If f has a pole of order p at z = (, then v(f) =
2p — (p+1) 4+ 0= p— 1. Now, suppose that f takes the value a at ¢ with multiplicity p. Again, v(f) =0+0+p—1=p— 1. So,
Nypum (f, ) counts values of high multiplicity. The function N, (f,7) is defined similarly and is known as the ramification term.

Theorem 6.3 (Nevanlinna’s second main theorem). Let f be a transcendental meromorphic function. For q > 2, let a; ...a, € C be
q distinct points. Then

(@~ DTGD) S NG+ 2N (527 ) = Nean () + T ()
=1 j

Proof. Letl = min |a; —a
’ 1<i<j<gq

;|- Fix a point 2 € C such that f(2) = 0,00,a; for all j € [1,g]. Then, choose k € [1,g] such that

|f(2) — a| is minimal. Thus, [f(2) — a,| < [f(2) — a;| for all j € [1, q]. Finally, define the following
! 2
Clay,ay,...,a,) = log” Z la| + (g —1) <logJr 7 + log 2) .

J=1.j#k

Forall j € [1,q] \ {k}, |f(2) —a;| > L. Therefore,

18
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log" |f(2) — a,| = log|f(2) — a;| + log" <log|f(z) —a,| +log" >

v
|f(2) — a4 I

So
2
log” [ f(2)| <log" |f(2) — a;| +log" a;| +log2 < log |f(2) — a;| + log" ] +log |a;| + log2,
and this gives

q
(qfl)log z)| < Z log|f(z —aj|+C’(a1,a2,...,aq). 3)
J=1,5#k

Now,

q

1
Z log|f(z *aj|*zlog|f *aj|+10gm

J=1,j#k
= q —a;| — (2 M
= D 08l — | — g (2 + g T
Zloglf( 2) — a;| — log|f'(2)] + log (Z |flf)(_)a |> W

The point of this manipulation is to eliminate £ from the inequality, so that none of the a; are treated any differently than the others.
Using 3 and 4, we have

1 27 . )
(a=1mifr) = - [ (g 1)log" | (e a0
0
1 q 1 2 .
3221/ g (re”) — ) o [ togl 7 (re”) s
1 f 10
? / log (Z |frewre ‘ ) df + C(ay, ay, ..., a,). 4)

Recall 3.3. Applying this to f'(2) and f(z) — a; allows us to eliminate most of the integrals in 5. We have

A e

J=1

27 / 19
)+qN(f7 r)+ (%0 —N(f',7) < %/ log (Z |ffef ) 6 — log |ile(f”, 0)]

+ Zlog|ilc(f —a;,0)| + Cl(ay,ay, ... ,a,).

=1

.7

The left hand side is

(4= VT(f.r) - (N(f,r>+ZN(f1a )) )

19
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To finish the proof, we note that

27 27
|f rew 1 |f rew
7/ log(Zlfrew_a> do 277/0 log* (Zvrew_a) do
q f/ Z
@ - )

IN

IA
3

6.1 Deficient Values

In this section, we will be studying something called deficient values. The idea is that we can predict how often f will hit a given value
¢ based on how fast f grows. However, sometimes f hits ¢ less often than expected. To measure this discrepancy, we define a function
called the Nevanlinna deficiency function:

Definition 6.4 (Nevanlinna deficiency function). Let f be an entire function and let ¢ € C. The Nevanlinna deficiency function 0 5 (c, f)

is defined as (f, e r) N(f.e,r)
m(f,c,r GT

— limint T GT) o

dn(c, f) =limin () TSP )

Now, since m(f,c,r) < T(f,r) (asymptotically) with both nonnegative, we know that 0 < dy(c, f) < 1. If d5(c, f) = 0, then
N(f,ce,r) ~T(f,r)asr — oo so the frequency at which f hits ¢ is on the level of f’s growth. This is what we would usually expect,
and is indeed what happens most of the time. However, there are some rare cases where d(c, f) > 0, and these ¢ are what we call
deficient values:

Definition 6.5 (Deficient Value). A deficient value of an entire function f is a complex number ¢ such that
6]\[(0) f) > 0.

Example. Take f(z) = ¢*, and ¢ = 0. Then

N(f,0
on(0,f) =1—limsup (£,0,7) lim sup

0
v 0 I v B

since e® never hits 0.

6.2 Picard’s Theorem

One of the principle motivations behind the development of Nevanlinna Theory was to provide a deeper understanding of wiy Picard’s the-
orems hold true. Although Picard and subsequent mathematicians offered rigorous analytical proofs of these theorems, these arguments
were often seen as ad hoc, and did not illuminate the underlying mechanisms that made them natural. Fortunately, with the machinery
of Nevanlinna theory, the proofs of both the Little and Great Picard Theorems become not only streamlined but also philosophically
satisfying.

Theorem 6.6 (Picard’s Little Theorem). Let f : C — CP! be a non-constant meromorphic function. Then, f can omit at most two
values in CPL.

Proof. Assume for the sake of contradiction, there exists a non-constant meromorphic function that omits a;, a,, a; € CP!. Note that
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d(f,a;) = 1 directly by definition. By the defect version of the Second Main Theorem, we have

> ba, f) <2

a€cCP?!
Butd(f,aq) + 0(f,as) + (f,as) =3 > 2, leading to a contradiction. O

Remark 6.1. Picard’s Little Theorem can be generalized far beyond CP! with the Second Main Theorem, see for instance [Don24].

The more difficult Picard’s Great Theorem requires more work.

7 Applications to Differential equations

Nevanlinna Theory is particularly powerful in the study of second-order linear differential equations with variable coefficients. These
have the form
"+ AR +B()f =0 (6)

where A(z) and B(z) # 0 are entire.

Much of the machinery for differential equations relies on deficiencies. The first essential question is to determine when a function
of order p has deficiencies. In particular, we can show that such an f exists for all p > %

Theorem 7.1. Let p > % Then, there exists an equation of the form 6 with a solution f such that

See ((GHW21], p.17) for the proof.

It turns out that there are no functions of order < % that have deficient values. Thus we call Theorem 7.1 sharp with respect to p,
because it gives the sharpest possible bound.

You are probably wondering why functions of order < % cannot have deficient values. The proof is a bit involved, so we only give

a broad explanation of how it works. (See [GOO08], p.207 for more details).

Take any function f of order p < 1/2. We want to show that f cannot have any Nevanlinna deficient values. It suffices to show
4(0, f) = 0, and we may assume that f(0) = 1. There is a certain inequality that can be proven holds for all o with p < o < 1. Then,
we manipulate the equation to get that §(0, f) < an expression of 0. Since p < % < 1, we are allowed to make o approach % in the
inequality, and that yeilds §(0, f) < 0. Since deficient values can’t be negative, we have §(0, f) = 0, as desired.

We can explicitly construct deficient functions f with order p > % One such construction is the class of Lindeldf functions.

Definition 7.2 (Lindelof Function). A Lindelof function L, is defined by

where e, (z) is defined as

For the motivation of this definition, see [GHW21].

For slowly growing functions f, we can consider a function analogous to the Nevanlinna deficiency function, called the Valiron de-
ficiency function:
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Definition 7.3. Let f be an entire function, and let ¢ € C. The Valiron deficiency function is defined as

Sy(e, f) = 11221;% —1 liggf]\m.

This may appear to be the same as the definition for § 5 (¢, f). However, notice that in the definition of 0, we have

o mf,e,r)
i = oy

while in the case of J;, we have lim sup instead of lim inf. In particular, this implies that
0< 5N(Caf) < 5V<Caf) <1
Just as with 0, the vast majority of times it happens that (¢, f) = 0. When this is false, we call ¢ a Valiron deficient value of f:

Definition 7.4. We say that c is a Valiron deficient value of f if

oy (c, f) > 0.

For slowly growing entire functions, Nevanlinna deficient values are not possible, but Valiron deficient values are. The growth of such
functions f can be measured in terms of the logarithmic order py,( f):

Definition 7.5. We define the logarithmic order p,o,(f) to be

. logT'(f,r)
=1 =
Prog(.f) imsup = Togr

There is an analogous result to Theorem 7.1 using Valiron deficiency and logarithmic order:

Theorem 7.6. Let p > 2. Then there exists an equation of the form 6 with a solution f satisfying 6\,(0, f) = 1 and
plog(B) < plog(A> < plog(f) =P

where A(z) is transcendental.

Remark. Here, transcendental means that A(z) is not a polynomial of z.

As with Theorem 7.1, the result fails for all p < 2. But unlike before, the case p = 2 is unsolved. Thus we call Theorem 7.6 es-
sentially sharp with respect to p.

Now, here is a useful theorem for finding differential equations for entire functions f:

Theorem 7.7 (Gol’dberg’s Theorem). Let f % 0 be an entire function whose zeros all have multiplicity at most n— 1, forn € N. Then
f is a solution of some differential equation of the form

FU ) + Ay () F 7V (2) + o+ Ay (2) f(2) + Ag(2) f(2) = 0, ()

where the A, s are entire and A, % 0.

Proof. In the case n = 1, f has no zeros and the proof is trivial: Take A;(z) = 1 and A,(z) = _J}’((:))_ For convinience sake, we will
only prove the case n = 2. The general case is quite similar. k

We assume that f has zeros, because if f has no zeros then the statement is trivial. Next, let’s write

J7(2) + A(2)f'(z) + B(2)f(2) =0
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for A, B entire and B # 0. Since f has zeros, we cannot simply make B(z) cancel with everything else. If we want to satisfy the
differential equation for the zeros 2, of f, we need

F"(z) + A(z) ' (2,) = 0,

" [ (z1)
z
A(z,) = — ko—i o
( k:) f/ (Zk) k
for all k. (Recall that if f has a simple zero at z then f’(z) # 0.) If {z,} is a finite sequence, then A(z) can be chosen as the Lagrange
interpolation polynomial. If it is an infinite sequence, then A(z) can be constructed using theorems of Weirstrall and Mittag-Leffler (see

9.1). Also, fix { # z;,. In addition to our constraints on z;,, we require that

[ (¢

f(©)

(To meet this requirement, just pick a different value for A(¢).) This guarantees f”(z) + A(z) f'(z) % 0. After finding an entire function
A(z) that satisfies all these properties, we define B(z) by

A(Q) # —

The numerator has zeros at the simple zeros of f, thus turning those into removable singularities when we divide out. Also, since the
numerator is not congruent to 0, we must have that B is an entire function such that B(z) # 0. You can check that these A and B satisfy
6, and thus we are done. O
Remark. If f is an entire function, there exists a constant ¢ for which g := f — ¢ has all simple zeros (see 9.2). A consequence of
this observation is that many properties of f, such as the number of deficient values, remain valid for g, and by Gol’dberg’s Theorem, g
solves some equation of the form 6.

Example.

1) For any finite number g > 2, there exists a solution of 6 with ¢ Nevanlinna-deficient values. Indeed, set

flz) = /OZ e *"ds

oo
L —g4
a, = 62”’“/‘1/ e %ds,
0

and

where 1 < k < ¢. Then f is entire, d 5 (ay, f) = 1/q, and § (¢, f) = 0 whenever ¢ # a,, forall 1 < k < ¢ (see [Wri65] p.46-47). We
know that f’(z) = e** has no zeros. Thus we find that for any constant c, the function ¢ = f — ¢ has all simple zeros and exactly ¢
Nevanlinna deficient values (since a simple zero is a zero z such that f'(z) # 0). Therefore by Gol’dberg’s Theorem, ¢ is a solution of
some equation of the form 6.

2) Eremenko proved ([GOO08], p.132) that for any countable set £ C C and any p > 1/2, there exists an entire function f of order
p such that E(f) = E. If f is any such function, then for a suitable ¢ € C, the function g = f — ¢ has only simple zeros and countably

many Nevanlinna deficient values, and g solves an equation of the form 6.

3) Let f be an entire function with uncountably many Valiron deficient values. For a suitable ¢ € C, g = f — ¢ has only simple
zeros and uncountably many Valiron deficient values, and g solves an equation of the form 6.

Gol’dberg’s Theorem does not give information about the orders of the coefficients in 7. Thus, although Gol’dberg’s Theorem is useful
in the above discussions, it cannot be used to prove the respective inequalities

p(B) < p(A) < p(f)
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and
plog(B) < plog(A> < plog(f)
in Theorems 7.1 and 7.6.

7.1 Malmquist’s Theorem

A significant result in the area of differential equations is that of Malmquist’s Theorem, a useful tool for solving rational ordinary
nonhomogenous differential equations.

Theorem 7.8 (Malmquist’s Theorem). Denote by C(2) the field of rational functions in the variable z with complex coefficients. Denote
by C(z)[X] the one-variable polynomial ring with coefficients in C(z). Let P(X) and Q(X) be relatively prime elements of C(z)[X]. If
the differential equation

P(f)

=30

has a transcendental meromorphic solution f, then Q) has degree zero in X and P has degree at most 2 in X.
Again, recall that a meromorphic function f is transcendental if it is not a quotient of polynomials.

We break the proof of this theorem into pieces. First we prove a proposition relating the quotient P(f)/Q(f) to the characteristic
function of f:

Lemma 7.9. Let P and Q) be as in the above theorem, and let f be an arbitrary transcendental meromorphic function. Write g =

P(f)/Q(f)- Then
T(g,7) = max{deg P,deg Q}T(f,r) + o(T(f,r)).

The proof is a bit involved, and we will not go into it (see [CYO01], p.130). We now state a weaker version of Malmquist’s Theorem as a
lemma:

Lemma 7.10. Let P(X) and Q(X) be relatively prime polynomials in C(z)[X] and let f be a transcendental meromorphic solution to

Then, deg P < 2 and deg Q < 2.

Proof. Let d = max{deg P,deg Q}. Since /" = P(f)/Q(f), by the previous proposition we have

ar(f, )— T(P(f)/Q(f) +o(T(f,r))
T(f,r)+o(T,r)
m(f’,00,m) + N(f",00,7) + o(T(f,7)).

Now, N(f’,00,r) <2N(f,o00,r) for r > 1, and by Proposition 1.5.1 ([CYO01]),

’

m(f',00,7) <m (J;,

Clearly, m(f, 00, 7)+2N(f,00,r) < 2T(f,r), and so we conclude from the Logarithmic Derivative Lemma (Theorem 3.4.1 of [CY01])
that

oo,r) +m(f,o0,7).

dT(f,r) <2T(f,7) +o(T(f,7))
for a sequence of 7 — oo. This means that d < 2, thus deg(P) < 2 and deg(Q) < 2. O

The above lemma reduces the proof of Malmquist’s Theorem to the case when P and () are quadratic. The proof'is essentially completed
by the following elementary lemma about quadratic polynomials:
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Lemma 7.11. Let
P(X)=ayX?+a, X +agand Q(X) = by X? + by X + by,

where ag, ay, ay,by, by, and by are all in C(z). Let
P(X) = agX? +a,X + ay and Q(X) = by X2 + b, X + b,.
Then, P and Q are relatively prime in C(z)[X] if and only if P and Q are relatively prime in C(2)[X].

Proof. Since P, () are quadratics, the only nontrivial common factor they could have is a linear one, i.e. a factor of the form ¢; X + ¢,.
But, by the symmetry of polynomial multiplication, this is equivalent to the statement that ¢, X + ¢, is a common factor of P and (). [

With all of our ingredients, we may now prove Malmquist’s Theorem:

Proof of Malmquist'’s Theorem. Let f be a transcendental meromorphic solution to the differential equation

,_ QW)
I=p(y

By Lemma 7.10, we have
P(X)=ayX?+a, X +agand Q(X) = by X2 + b, X + by,

where ag, a4, aq, by, by, and b, are in C(z). We need to show that

Letg = 1/f. Then,

g,:_i’:_ ag +ay f + asf?
f? f2bg + b1 f + by f?]
__9%lag+ai/g+ ay/9]
bo +b1/9 +by/g*
9*lagg® + ayg + ay]
bog? +big+by

Thus, g is a transcendental meromorphic solution to

where P and Q are defined as in Lemma 7.11. Now, the above fraction must reduce to a fraction of quadratics by Lemma 7.10. Since
X?P(X) has degree 4, this means that it and (X ) must have a quadratic factor in common. But since P and () are relatively prime by
Lemma 7.11, this means that X2 divides Q(X), and by definition of ) this implies that b, () = b,(z) = 0.00

8 Research Trends and Open Problems

8.1 Generalizations

Nevanlinna Theory has been applied in a surprising number of seemingly unrelated fields. We have already briefly discussed the appli-
cations to Number Theory and Differential Equations, though we note that there is a great abundance of literature on this topic that we
have not begun to comprehensively cover.

Of course, a major question is whether the ideas and results of Nevanlinna Theory can be generalized to settings beyond CP!. The
development of non-Archimedean analogs of Nevanlinna Theory have recently emerged as an active area of research, particularly in the
context of p-adic analysis. Analogues of the First and Second Main Theorem have been developed for p-adic meromorphic functions on
B, (0).

P
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Theorem 8.1 (p-adic First Main Theorem). Let f be a non-constant meromorphic function in B(p). Then, for every a € C,,

m(ﬁﬂ“) +N<ﬁ,r> =T(f,r)+0O(1) (r—p).

Theorem 8.2 (p-adic Second Main Theorem). Let f be a non-constant meromorphic function in B(p) and let ay, ..., a, be distinct
numbers in Cp. Then,

q

(g— VT (f,r) <N(fr)+ SN (ﬁﬂ CON(f,r) + N(fr) — N (fir) _logr + O(1).
=1

The interested reader may refer to [YH99] for proofs of these theorems.

Extending these results to higher dimensional p-adic varieties remains unresolved, as the connections between algebraic geometry and
value distribution remain poorly understood. Furthermore, technical results regarding ramification and error terms also demand further
investigation.

Some research has also been done extending Nevanlinna theory to difference operators. While Nevanlinna theory provides estimates
involving the derivative f + f’, estimates on the exact difference f > Af = f(z+ ¢) — f(2) are less understood. Some progress have
been made for the ¢- paired points of meromorphic functions f, where a point a is said to be c-paired if f(z) = f(z + ¢) = a. [HKO05]
proved an analog of the Second Main Theorem in this case, which we state below.

Theorem 8.3 (Second Main Theorem for Difference Operators). Let c € C, and let f be a meromorphic function of finite order such
that A .f # 0. Let ¢ > 2, and let a,(2), ..., a,(2) be distinct meromorphic periodic functions with period c such that ay, € I (f) for all
k=1,....,q. Then

m(r,f)+Zm(r,f_1a ) S2T(T7f>7Npair<r7f)+5(raf)v
k=1 k

where

Nl ) = 2N ) = N )+ (15 ).

and the exceptional set associated with S(r, f) is of at most finite logarithmic measure.

Other results surrounding this topic can be found in [HKO05].

Extending Nevalinna theory to several variables has proven notoriously difficult, as the naive generalization of counting functions fails
to capture the complexity of higher dimensional mappings.

8.2 The Inverse Problem

The so-called direct problem of Nevanlinna Theory focuses on analyzing the distribution of values taken on by a fixed meromorphic
function. In contrast, the inverse problem poses a more delicate question. In its essence, the inverse problem asks to what extent the
value distribution of a meromorphic function be prescribed under given hypothesis.

The Problem can formally be stated as follows: Given a finite or countable set of values a;. ., C CP! and corresponding deficiencies
6;  €10,1] satisfying
> <2

Jje
jed
does there exists a non-constant meromorphic function f on C such that §(a;, f) = §; forall j € J?

As of current, this problem remains unsolved in its general case, though constructions in specific cases have been found. We present part
of a famous construction due to [Wri65] for entire functions under the conditions above.
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9 Appendix

9.1 Mittag-Leffler and Weirstraf}

Consider two sequences {a; } and {b, }, where {a, } are isolated points and all terms in {a, } are distinct. As in Gol’dberg’s Theorem,
we want to find an entire function f(z) such that f(a;,) = b,, for all k.

Theorem 9.1 (Weirstrafl Factorization Theorem). Let
0,...,0,aq,a, ...

(with m zeros) be a sequence of complex numbers, sorted by absolute value, so that a,, — oo as n — oo. Then

o= f] (- 2)a ()

n

is an entire function that vanishes at 0 (if m > 0) and the a;, s and nowhere else, so that the order of the zero at a is equal to the number
of occurences of a in the sequence.

In other words, f(z) has zeros at each of the terms in the sequence, counting multiplicity.

Theorem 9.2 (Mittag-Leffler Theorem). Let U be an open set in C and let E C U be a subset whose limit points occur only on the
boundary of U. For each a € F, let p,(z) be a polynomial in 1/(z — a) without constant coefficient, i.e. of the form

a

N C
pa(z) - Z ﬁ'

Then there exists a meromorphic function f on U whose poles are precisely the elements of E and so that for each such pole a € E, the
Sunction f(z) — p,(z) has a removable singularity at a.

Now, plugging the sequence {a,;} into the Wierstral Factorization Theorem yields a function f;(z) that has simple zeros at the a;,’s.
Plugging in £ = {a, } and

_ by,
Pal?) = ez —ap)’

we get a function f,(z) with poles at the a;’s such that
_ b
filag)(z — ay)

has a removable singularity at a;. (Note that f](a;,) # 0 since f; has a simple zero there.) Then, we define f(z) = f,(z)f5(z). Since
f5 has simple poles where f; has zeros, we have that f is an entire function. For all k, we compute that

flay) = lim f,(2)fy(2)

z—ray,

fa(2) = = hy,(2)

ET by f (Z)

= Jim A+ e
g Oehi(2)

= )z —ap)
bR

=%, Flen)

_bkf{(ak)

B fi(ag)

= bk:’

by L’hospital’s rule. Thus we have found our f.
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9.2 Functions with All Simple Zeros

If f(z) is an entire function, we want to prove that there exists a constant ¢ such that g(z) := f(z) — ¢ has all (if any) of its zeros simple.
Let E be the set of zeros of f’(z). In order for our function g(z) to have all simple zeros, there must not exist z such that g(z) = 0 and
g’ (z) = f'(2) = 0. In other words, we need a constant ¢ such that whenever z € E, f(z) # c. But E must be countable since it’s the
set of zeros of some function. If E is countable, then the image f(E) is also countable, so there exist complex numbers ¢ ¢ f(F). Such
a c satisfies the desired properties.
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