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ABSTRACT. This paper shows the connections between elliptic partial differential equa-
tions (PDEs) and complex analysis, focusing on how fundamental things like harmonic and
holomorphic functions intertwine. We first examine and define elliptic PDEs, highlighting
Laplace’s equation as the main example. Using the Cauchy-Riemann equations, we show
that real and imaginary parts of any holomorphic function solve Laplace’s equation, connect-
ing complex differentiability with harmonicity. Then, we analyze boundary value problems,
and explore the role of conformal mappings in transforming domains and maintaining the
harmonicity.

1. INTRODUCTION

Partial differential equations (PDEs) are very important in both math and physics, used
to model things from heat flow to electrostatics. Elliptic PDEs dictate the steady-state or
equilibrium behavior and are distinguished by their smoothness and symmetry.

Definition 1.1. A second-order linear PDE in two variables
Az, y)ugy + 2B(x, y)uyy + C(z, y)uy, + lower order terms = 0
is called elliptic at a point if the discriminant B? — AC < 0.

The most fundamental example of an elliptic PDE is the Laplace equation
_ u N Pu
0z oy?

whose solutions are called harmonic functions. When modeling gravitational potentials,
incompressible fluid flow, and electric fields, these functions are very important

In complex analysis on the other, harmonic functions appear naturally. Something to
note is that the real and imaginary parts of any holomorphic function are harmonic. This
connection is rooted in the Cauchy-Riemann equations, which characterize complex dif-
ferentiability.

Au 0,

Theorem 1.2. Let f(z) = u(z,y)+iv(x,y) be holomorphic on a domain 2 C C. Then both
u and v are harmonic on Q.

This paper aims to highlight the role of elliptic PDEs in complex analysis, focusing on
the Laplace equation and its harmonic solutions. We examine how holomorphic functions
encode harmonicity, study boundary value problems like the Dirichlet problem, and explore
how conformal mappings preserve elliptic structure.
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2. Erriptic PDES: DEFINITIONS AND EXAMPLES

We now turn to the definition of elliptic partial differential equations and some illustrative
examples that are important in understanding the rest of this paper. A key feature of elliptic
equations is the absence of real characteristic directions, which means that their influence
propagates to all directions rather than along specific paths, unlike hyperbolic PDEs.

2.1. Classification of Second-Order PDEs. Consider a general linear second-order PDE
in two variables

2 2 2

0
Alz, y)a—;; +2B(x,y) 920y + C(z, y)a—; + lower order terms = 0.

The classification of these equations depend on the sign of the discriminant

D= B* - AC.

Definition 2.1. A second-order PDE is:

e Elliptic at a point if D < 0,
e Parabolic at a point if D = 0,
e Hyperbolic at a point if D > 0.

These are very similar to conic sections in algebraic geometry and help show the qualitative
behavior of solutions. Elliptic equations, with D < 0, typically model smooth, steady-state
behavior with no inherent direction of propagation.

2.2. Laplace and Poisson Equations. The base of elliptic PDEs is Laplace’s equation

’u  0%*u B

Au:%ﬁLa—zﬂ—

0.

Solutions to Laplace’s equation are called harmonic functions. These functions have
some very important properties. They are smooth (infinitely differentiable) wherever defined,
satisfy a mean value property, and obey the maximum principle. See [4], [6] for full discussion.

A closely related equation is the Poisson equation

Au = f(z,y),

where f is a given source term. While Laplace’s equation models source-free phenomena,
Poisson’s equation accounts for internal sources or sinks (such as electric charge distribu-
tions).

Ezample. Let u(x,y) = log /2% 4+ y2. Then

*u  0u

o2 T o 0 for (z,y) # (0,0),
so u is harmonic on R?\ {0}. This is the fundamental solution to Laplace’s equation in two
dimensions.



ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPLEX ANALYSIS 3

2.3. Geometric Interpretation. Geometrically, the Laplace equation implies that the
function u is locally flat in a precise average sense, meaning its value at any point is equal
to the average of its values on a small circle centered at that point. This is known as the
mean value property, and it suggests that harmonic functions have no local maxima or
minima unless they are constant.

In complex analysis, these properties will soon appear as the results of analyticity high-
lighting the harmony between the analytic and geometric viewpoints.

3. CAuCHY-RIEMANN EQUATIONS AND HARMONICITY

The link between holomorphic functions and harmonic functions is one of the most beau-
tiful connections between complex analysis and elliptic partial differential equations.

Let f(z) = u(x,y) + iv(x,y) be a complex-valued function defined on an open subset of
C, where z = xz + iy and u,v : R*> — R. The function f is said to be holomorphic if it is
complex differentiable at every point of its domain.

To say that f is complex differentiable at a point means that the limit

. f(zo+h) = f(20)

/ —

f(z0) = lim Y

exists and is independent of the direction in which h € C approaches zero.

Definition 3.1. A function f(z) = u(x,y) +iv(z,y) is holomorphic at zy = x¢ + iy if the
partial derivatives ug, uy, v;, v, exist and are continuous near 2y, and the Cauchy-Riemann
equations hold

Up = Vy, Uy = —Vy.

These equations ensure that the real and imaginary parts of f are tightly linked. They
create the requirement that f is conformal, meaning it is angle-preserving and locally behaves
like a complex linear transformation. A notable result of these equations is that both u and
v automatically satisfy Laplace’s equation.

Theorem 3.2. If f(z) = u(x,y) + iv(x,y) is holomorphic on an open set Q C C, then u
and v are harmonic on €2; that is,

AU = Ugy + Uyy = 0, AV = vy + vy, = 0.

Proof. A classic proof of this relationship appears in [2] and is explored further in [1].
Assume f is holomorphic, so the Cauchy-Riemann equations hold. Differentiating u, = v,
with respect to x, we get

Ugy = Vyg-
Differentiating u, = —v, with respect to y, we get
Uyy = —Vgy.

Adding these gives

AU = Ugy + Uyy = Vyg — Vgy = 0,
since mixed partial derivatives commute under continuity assumptions. Similarly for Av. B
Ezample. The function f(z) = 2% = (z +iy)? = 2? — y* + 2izy is holomorphic. Its real part
u(x,y) = 2% — y* and imaginary part v(x,y) = 2zy are both harmonic

Au=(2)+(-2)=0, Av=(0)+(0)=0.
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This has many notable results. Holomorphic functions are automatically solutions to the
Laplace equation. Thus, every analytic function has within it two harmonic functions which
are its real and imaginary parts.

From a PDE perspective, this is powerful since constructing solutions to Laplace’s equa-
tion can be achieved by finding appropriate holomorphic functions. This approach is very
important for when we explore boundary value problems and conformal mappings in later
sections.

Remark 3.3. The reverse implication is not true. Not every harmonic function arises as the
real or imaginary part of a holomorphic function. For instance, u(x,y) = x*>—y? is harmonic,
but unless paired with the right imaginary part v, it may not define a holomorphic function.
One must construct v such that the Cauchy-Riemann equations hold.

4. THE DIRICHLET PROBLEM AND BOUNDARY BEHAVIOR

We now move on to boundary value problems, in which the behavior of a function is
described on the boundary of a domain. In the problem, we aim to find a harmonic function
inside that satisfies the boundary conditions. One of the most important of such problems
is the Dirichlet problem.

Problem (Dirichlet Problem). Let Q C R? be a bounded, open domain with sufficiently
smooth boundary 0. Given a continuous function f : 00 — R, find a function u: Q2 — R
such that

e Au =20 1in €,
e u=f on 0N

In real life this problem corresponds to finding the equilibrium temperature in a plate €2
whose boundary temperature is ruled by f, or the electrostatic potential in a region with
fixed boundary values.

Theorem 4.1 (Existence and Uniqueness). Let Q be a bounded domain with Ct boundary,
and let f € C(99). Then there exists a unique function u € C*(Q) N C(Q) that solves the
Dirichlet problem.

There are many methods to solving or proving the solvability of the Dirichlet problem.

1. Perron’s Method. In this we construct the solution as the supremum of all subhar-
monic functions that lie beneath the boundary data. It uses comparison principles and
the maximum principle to make sure that the limit function is harmonic and matches the
boundary.

2. Green’s Function. If a Green’s function can be constructed G(z,y;&,n) for €2, then
the solution can be expressed through the integral

oG
U(Qf,y) = /89 f(gan)%dsa

where 0G/On denotes the normal derivative.
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3. Variational Methods. By minimizing the Dirichlet energy functional
Elu] = / |Vul? dzdy,
Q

subject to the constraint u = f on 02, we can obtain a weak solution which is then shown
to be smooth.

4.1. Uniqueness through Maximum Principle. Suppose u; and us both solve the Dirich-
let problem with the same boundary values. Then w = u; — uy satisfies

Aw=01in Q, w =0 on 0.
By the maximum principle, w = 0, and hence u; = us.

Ezample. Let Q be the unit disk D = {z € C : |z] < 1}, and let f(f) = cos(26) be the
boundary data on 0D. Then the solution to the Dirichlet problem is given by the Poisson
integral formula

u(r, ) = r? cos(26),
which is harmonic in D and agrees with f on 0D. See [7] for an analytic approach to solving
the Dirichlet problem using potential theory.

In complex analysis, the problem also rises to determine whether a continuous boundary
function f can be extended to a harmonic or even analytic function in the interior. The
Poisson integral is often used to define this extension on the unit disk. Variational methods
are treated extensively in [4] and [5].

This link between boundary values and interior harmonicity is even stronger when com-
bined with conformal mappings.

5. CONFORMAL MAPPINGS AND INVARIANCE OF HARMONICITY

An extremely useful tool in complex analysis is the use of conformal maps. These functions
not only simplify geometric configurations but also preserve the harmonic nature of functions,
which is a very important property when solving elliptic PDEs in complex domains.

Definition 5.1. A function f : 2 — C is said to be conformal at a point z, € Q if it is
holomorphic at zg and f’(z) # 0. A map is conformal on  if it is conformal at every point
in €.

Because conformal maps are locally biholomorphic, they preserve angles and infinitesimal
shapes. More importantly for us, they also maintain the class of harmonic functions under
composition. This invariance under conformal maps is detailed in 2], with applications in [3].

Theorem 5.2. Let ¢ : Q@ — Q' be a conformal (holomorphic and bijective) map, and let
u: Q' — R be harmonic. Then the composition u o ¢ is harmonic on 2.

Proof. Let z € Q and ¢(z) = w € Q. Since u is harmonic in w, we have

Ayu(w) = 0.
We want to show A, (uo ¢)(z) = 0. Because ¢ is holomorphic, the Laplacian transforms
under change of variables in a way that preserves harmonicity. A formal calculation using

the chain rule (or the invariance of the Laplace-Beltrami operator under conformal metrics)
gives us the results. L
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5.1. Applications to Solving the Dirichlet Problem. One of the most important uses
of conformal mappings is in transferring difficult boundary value problems to simpler geome-
tries. For example, solving the Dirichlet problem on an ellipse or polygon can be converted
into a problem on the unit disk, where the Poisson integral formula applies and it becomes
much easier.

Ezample. Let ¢(z) = i—;z, which maps the upper half-plane H = {Im(z) > 0} conformally

onto the unit disk D. If u is harmonic on D, then w o ¢ is harmonic on H. Thus, the solution
to a Dirichlet problem on H can be constructed by solving on D and pulling back the result.

Remark 5.3. The Riemann Mapping Theorem guarantees that any simply connected, proper
open subset of C (not equal to C itself) can be conformally mapped onto the unit disk. This
theorem is not constructive, yet it provides a very strong theoretical method for solving
harmonic problems in arbitrary simply connected domains.

Although Laplace’s equation is expressed in Cartesian coordinates, its geometric nature
means it is maintained under conformal mappings. This invariance helps explain why many
classical potential theory problems in physics are solvable using methods that come from
complex analysis.

In higher dimensions, this conformal invariance breaks down, which is one reason why
the two-dimensional case is so special. In dimension n > 3, conformal transformations are
far more restricted, and the elegant equivalence between harmonic and analytic functions
disappears.

6. MAXIMUM PRINCIPLE AND REGULARITY

Elliptic PDEs, and harmonic functions in particular, have many interesting qualitative
properties. Among these, the maximum principle and the regularity of solutions are a
couple of the most important and the ones we will focus on. These results emphasize the
stability, smoothness, and rigidity of solutions to elliptic equations.

6.1. The Maximum Principle. The maximum principle tells us that the behavior of a
harmonic function on the interior of a domain is entirely controlled by its boundary values.

Theorem 6.1 (Maximum Principle). Let u € C?(Q) N C(Q) be harmonic on a bounded
domain Q C R?. Then

supu(z) < sup u(z), infu(z) > inf u(z).

0] 2€00 zeQ z€00

Corollary 6.2. If u holds its local maximum or minimum wn the interior of (), then u s
constant throughout €).

Proof. Suppose u has a strict maximum at an interior point. Then Vu = 0, and the Hessian
is negative definite, implying Au < 0, which contradicts Au = 0. So, no such strict interior
extremum can exist unless u is constant. [

This principle leads us to many conclusions.

e It implies uniqueness for the Dirichlet problem.

e It provides bounds on solutions inside the domain.

e [t tells us that harmonic functions cannot peak or dip in the interior but instead only
on the boundary.
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A stronger version of the maximum principle tells us that if the maximum or minimum
is anywhere in the interior, then the function is constant. This rigidity reflects the tight
constraints that Laplace’s equation creates on its solutions. This is one of the core qualitative
results for elliptic PDEs [6], [5].

6.2. Regularity of Solutions. Another important part of elliptic PDEs is that their solu-
tions are very smooth, often more than the data that we start with.

Theorem 6.3 (Interior Regularity). Let u solve Au = 0 in Q, and assume u € C°(Q). Then
u € C™(Q), and if the coefficients of the PDE are real analytic, so is u.

This strongly contrasts hyperbolic PDEs, where even smooth initial data can lead to
solutions that create singularities. For elliptic equations, the opposite is true. Even rough
boundary data can get smoothed out in the interior.

Remark 6.4. This would mean that solving Laplace’s equation not only gives a solution,
but gives a highly regular one. This regularity is very important in applications such as
fluid dynamics, electrostatics, and elasticity, where smoothness is necessary for interpreting
physical quantities like stress, potential, and flow.

While solutions are smooth in the interior, their behavior near the boundary depends on
the regularity of the boundary itself. If 90 is smooth, for example C'1®, then the solution u
extends smoothly up to the boundary. This result is part of the classical theory of elliptic
boundary regularity and is closely connected to the use of barrier functions and the Schauder

estimates. For regularity up to the boundary and the role of smoothness of coefficients,
see [4], [6].
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