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1 Introduction

In many applications, closed-form analytic solutions are not always available. Fortunately,
there exist many approximization methods, including the Weierstraß Approximation The-
orem, for instance, which guarantee that any continuous function can be approximated
arbitrarily closely by a sum of polynomials (see my expository paper from Measure The-
ory). A similar result, implied by the Stone-Weierstraß Theorem, states that continuous
(and sometimes even discontinuous) functions can be approximated arbitrarily closely by
so-called trigonometric polynomials. In the limit of an infinite number of terms, we obtain
the Fourier series, named after the physicist Joseph Fourier:

Definition 1. The Fourier series of a function f of period P that is integrable over [0, P ] is

defined as
∑∞

k=−∞ ake
i2π k

P
x, where the coefficients ak can be proven to be 1

P

∫ P

0
f(t)e−i2π k

P
t dt.

Unfortunately, this series does not always converge to f , as will be demonstrated with
a counterexample. For the sake of simplicity, we will only be referring to a condition for
convergence based on the notion of “bounded variation” that guarantees (but in fact is not
necessary for) pointwise convergence. While we can only create a Fourier series for a periodic
function, there does exist a generalization of the Fourier coefficients to a set of non-periodic
functions:

Definition 2. Assume that a given function f Lebesgue-integrable and absolutely integrable,
meaning that

∫∞
−∞ |f(x)| dx is finite. Then, the Fourier transform of f is defined as:

(Ff)(x) =

∫ ∞

−∞
f(t)e−i2πxt dt.

This new function represents a frequency distribution.

The aforementioned Fourier series decomposes a function f into a sum of complex ex-
ponentials of different periods, and so it should not be surprising that we are able to use
the Fourier transform to represent f , not as a sum, but as an integral of these complex
exponentials:
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Theorem 1. (Fourier Inversion Theorem)
If a Lebesgue-integral continuous function f as the Fourier transform Ff , then:

f(x) =

∫ ∞

−∞
(Ff)(t)ei2πxt dt.

In other words, if we have a Fourier transform Ff , we can reconstruct the original
function f — in fact, f(x) is the Fourier transform of Ff(−x). Of course, this continuous
Fourier transform may not always be very practical and our original Fourier series may be
more desirable — indeed, if we have some computer program that calculates the Fourier
transform of a function (e.g. for the processing of images), we cannot store the transform
for each of the infinitely many possible periods.

In addition to presenting these definitions for the Fourier series and transform and proving
the Fourier Inversion Theorem, in this paper we will also be proving Perseval’s Theorem —
which states that the Fourier transform is a unitary operator on L2(R) — and the Poisson
Summation Formula — which relates the periodic sum of a function to the same periodic sum
of its Fourier transform. At the end, we will be analyzing a simple but famous application
of Fourier analysis in physics, Fourier’s heat equation.

2 The Fourier Series & Convergence Problems

Select a complex-valued function f with period P such that f can be expressed as
∑∞

k=−∞ ake
i2π k

P
x,

where the division by P in the exponential guarantees that f(x) = f(x + P ). By Euler’s
identity, we can rewrite the Fourier series as a trigonometric polynomial of infinite degree,∑∞

k=−∞(Ak cos(2π
k
P
x) +Bk sin(2π

k
P
x)), for appropriate coefficients Ak = ak, Bk = iak.

In order to derive the coefficients ak, we assume that
∑∞

−∞ |ak| is finite (the expres-
sions for the coefficients also work if this sum diverges). We demonstrate that the coeffi-

cients ak are of the form 1
P

∫ P

0
f(t)e−i2π k

P
x dt, as suggested above. We first multiply both

sides of the assumed equality f(x) =
∑∞

k=−∞ ake
i2π k

P
x by e−i2π n

P
x to obtain f(x)e−i2π n

P
x =∑∞

k=−∞ ake
i2π k−n

P
x, and then we integrate both sides from 0 to P to have

∫ P

0
f(x)e−i2π n

P
x dx =∫ P

0
(
∑∞

k=−∞ ake
i2π k−n

P
x) dx. We express the series as the limit of a summation, making the

right-hand side
∫ P

0
(limℓ→∞

∑ℓ
k=−ℓ ake

i2π k−n
P

x) dx. Since the magnitude of the summation

is bounded by |
∑ℓ

k=−ℓ ake
i2π k−n

P
x| ≤

∑ℓ
k=−ℓ |ak||ei2π

k−n
P

x| =
∑ℓ

k=−ℓ |ak| ≤
∑∞

−∞ |ak|, a finite
series. By the dominated convergence theorem, we can interchange the limit and the integral
to obtain the equation:∫ P

0

f(x)e−i2π n
P
x dx = lim

ℓ→∞

∫ P

0

(
ℓ∑

k=−ℓ

ake
i2π k−n

P
x) dx =

∞∑
k=−∞

∫ P

0

ake
i2π k−n

P
x dx.

Since
∫ P

0
ane

i2π n−n
P

x dx =
∫ P

0
an dx = Pan is the only nonzero integral, with all others being∫ P

0
ake

i2π k−n
P

x dx = [ P
2iπ

ake
i2π k−n

P
x]P0 = 0, we determine that

∫ P

0
f(x)e−i2π n

P
x dx = Pan. We

have thus proven that, if f is writable as a sum of complex exponentials, then the coefficients
are ak =

1
P

∫ P

0
f(t)e−i2π k

P
x dt.
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The fact that we integrate f over the whole period in order to determine the coef-
ficients already indicates that the Fourier series does not always accurately represent f .
Instead, the coefficients only represent the “average” contribution of each exponential, lead-
ing to the possibility that the Fourier series does not converge to f . More explicitly, if
fn(x) =

∑n
k=−n ake

i2π k
P
x is the truncation of the Fourier series, it is not always the case that

limn→∞ fn(x) = f(x) (i.e. there does not necessarily exist pointwise convergence).

Example 1. (Square wave approximation)

Define the discontinuous but periodic function g(x) = { 1 x∈[0,π)
−1 x∈[π,2π) such that g(x) =

g(x+ 2π). We determine the Fourier coefficients:

ak =
1

2π

∫ 2π

0

g(t)e−ikx dt =
1

2π

(∫ π

0

e−ikx dt−
∫ 2π

π

e−ikx dt

)
=

1

2π
(−[

1

ik
e−ikx]π0 + [

1

ik
e−ikx]2ππ )

=
1

ikπ
− 1

ikπ
e−ikπ

a0 =
1

2π

∫ 2π

0

g(t) dt = 0

a−k =
1

2π

∫ 2π

0

g(t)eikx dt =
1

2π

(∫ π

0

eikx dt−
∫ 2π

π

eikx dt

)
=

1

2π
([
1

ik
eikx]π0 − [

1

ik
eikx]2ππ )

= − 1

ikπ
+

1

ikπ
eikπ.

The coefficients ak and a−k are only nonzero for odd k, so we obtain the truncations gn(x) =∑⌊n
2
⌋

ℓ=1
2

i(2ℓ−1)π
(ei(2ℓ−1)x − e−i(2ℓ−1)x) = 4

π

∑⌊n
2
⌋

ℓ=1
1

2ℓ−1
sin((2ℓ− 1)x), which are plotted below for

n = 2, 5, 10, 20. Clearly, at x = 2πm for integer m, all truncations evaluate to gn(2πm) = 0,
implying that the limit is 0, even if the point on the function being approximated is g(2πn) =
1. Since the continuous functions that are the Fourier series truncations must approximate
a discontinuous function, it is to be expected that the approximations approach the average
value of the function at the points of discontinuity rather than its true value.
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Example 2. (Sawtooth wave approximation)
The sawtooth wave, defined as h(x) = x for x ∈ [−π, π) such that h(x) = h(x + 2π),

has the Fourier series truncations hn(x) = − 2
π

∑n
k=1

(−1)k

k
sin(kx), again plotted for n =

2, 5, 10, 20. Clearly, hn(π) = 0 again, resulting in the Fourier series being 0, but h(π) = −π.

Fortunately, as can be seen in the graphs above, at all other x, we indeed have limn→∞ gn(x) =
g(x) and limn→∞ hn(x) = h(x). We will soon prove these results when considering the point-
wise convergence conditions. Another glaring issue with the successive approximations of
the square wave in particular (and, less noticeably, of the sawtooth wave) is the fact that,
close to the points of discontinuity, there exists one oscillation that deviates extremely from
the actual function. Unfortunately, the Gibbs phenomenon [2] is not a byproduct of techni-
cal limitations, as the physicist A. A. Michelson allegedly suspected when he constructed a
machine that outputs Fourier series approximations. Worse yet, the fluctuation’s amplitude
never decreases to 0 — only its width does!

Proof. (Limit of the amplitude)

At the local maxima, we require that g′n(x) =
4
π

∑⌊n
2
⌋

ℓ=1
1

2ℓ−1
sin′((2ℓ−1)x) = 4

π

∑⌊n
2
⌋

ℓ=1 cos((2ℓ−
1)x) = 0. The crest of the deviating oscillation occurs at the smallest positive solution,
specifically x = π

2⌊n
2
⌋ :

4

π

⌊n
2
⌋∑

ℓ=1

cos

(
(2ℓ− 1)π

2⌊n
2
⌋

)
=

4

π

⌊ ⌊n
2 ⌋
2

⌋∑
ℓ=1

(
cos

(
(2ℓ− 1)π

2⌊n
2
⌋

)
+ cos

(
π − (2ℓ− 1)π

2⌊n
2
⌋

))
= 0.

For any smaller positive x, there exist too few negative terms of too small magnitude for the
sum to be cancel to 0. Evaluated at this maximizing x, the summation in gn(x) approximates
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an integral in the limit:

lim
n→∞

gn(
π

2⌊n
2
⌋
) =

2

π
lim
n→∞

⌊n
2
⌋∑

ℓ=1

2⌊n
2
⌋

2ℓ− 1
sin

(
(2ℓ− 1)π

2⌊n
2
⌋

)
1

⌊n
2
⌋
=

2

π

∫ π

0

1

t
sin t dt.

Unfortunately, the sinc function ( sinx
x
) has no analytical antiderivative, so we need to cal-

culate the integral numerically. We then find that the deviation from the square wave is
approximately −1 + 2

π

∫ π

0
1
t
sin t dt ≈ 0.1789797 · · · , which is rather significant. The value of

the definite integral is known as the Wilbraham-Gibbs constant, named after the discoverer
of the phenomenon, the mathematician Henry Wilbraham (the reference to the physicist
Josiah Gibbs is another example of Stigler’s law).

This ∼ 17.898% error generalizes to any discontinuous function. The Gibbs phenomenon
does not pose trouble for pointwise convergence, but does for uniform convergence: For ϵ > 0
less than ∼ 0.17898, there exists no sufficiently large N such that |gn(x) − g(x)| < ϵ for all
n > N and for all x. For the sake of simplicity, we will only show the sufficient conditions for
the Fourier series approximations of a function to converge pointwise, but this brief discussion
demonstrates once more the distinction between uniform and pointwise convergence.

Definition 3. A function is of bounded variation over an interval [a, b] if

sup
n,a≤x0≤x1≤···≤xn≤b

n−1∑
i=0

|f(xi+1)− f(xi)|

is finite. Equivalently, f must be expressible as the difference of two monotonically increasing
functions.

Theorem 2. (Dirichlet-Jordan criterion)
If the integrable function f of period P is of bounded variation over [−P, P ], then the limit

of the Fourier series truncations, limn→∞ fn(x), is equal to limϵ→0
f(x+ϵ)+f(x−ϵ)

2
, which takes

into consideration discontinuities of f . When f is continuous at x, we have limn→∞ fn(x) =
f(x).

The square and sawtooth waves satisfy the Dirichlet-Jordan criterion because the suprema
are 2 and 4π, respectively, and so do all smooth functions when restricted to the domain
[−P, P ]. Do note that functions that do not satisfy the criterion may still be equal to their
Fourier series.

The proof for this convergence test exploits the properties of the Dirichlet kernel, defined

as Dn(t) =
sin(

(2n+1)πt
P

)

2 sin(πt
P
)

, where P is again the period of f . It turns out that the truncated

Fourier series
∑n

k=−n ake
i2π k

P
x is equal to 1

P

∫ P

−P
f(x− t)Dn(t) dt. Unfortunately, we require

a significant number of lemmas, and in order to not pursue a tangent, we leave the proof as
an exercise for the reader.
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3 The Fourier Transform & Its Properties

We now wish to generalize the above results of Fourier series to non-periodic functions.
Recall the definition from the introduction of the Fourier transform Ff for a Lebesgue-
integrable function f , which is also be expressed as f̂ or (rarely) f in different contexts. The
notation we choose clearly indicates that the Fourier transform is an operator, a function on
a set of function, just like the familiar differential operator D. Of course, F is very distinct
from D, most notably that F can map real functions to complex ones, while D never does.
For instance, if g is defined as the (real) indicator function for the set [0, 1] (i.e. g(x) = 1

when x is in the set, 0 otherwise), we have (Fg)(x) =
∫∞
−∞ g(t)e−i2πxt dt =

∫ 1

0
e−i2πxt dt =

[− 1
i2π

e−i2πxt]10 =
1−ei2πx

i2π
, which is a complex function.

Nevertheless, some of the properties of D do transfer over to F , perhaps most obviously
linearity. Fortunately, by the linearity of the integral, we can verify that the Fourier transform
(F(af + bg))(x) is equal to:∫ ∞

−∞
(af(t)+bg(t))e−i2πxt dt = a

∫ ∞

−∞
f(t)e−i2πxt dt+b

∫ ∞

−∞
g(t)e−i2πxt dt = a(Ff)(x)+b(Fg)(x).

Let a(x) = ax. We know that D(f ◦ a)(x) = a(Df)(ax) through the chain rule, and F
functions very similarly, as can be proven through a straightforward change of variables:

(F(f ◦ a))(x) =
∫ ∞

−∞
f(at)e−i2πxt dt =

1

a

∫ ∞

−∞
f(s)e−i2π xs

a ds =
1

a
(Ff)

(x
a

)
.

The operator D is famously not invertible: given the derivative Df , we cannot determine
f (if the indefinite integral ofDf is definable, we only obtain f up to a constant). In contrast,
the Fourier transform F has a very elegant theorem that guarantees its invertibility. [4]

Theorem 3. (Fourier Inversion Theorem)
If a Lebesgue-integrable continuous function f has the Fourier transform Ff , then:

f(x) =

∫ ∞

−∞
(Ff)(t)ei2πxt dt.

Proof. We know that limϵ→0+
∫∞
−∞(Ff)(t)ei2πxte−πϵ2t2 dt =

∫∞
−∞(Ff)(t)ei2πxt(limϵ→0+ e−πϵ2t2) dt =∫∞

−∞(Ff)(t)ei2πxt dt by the dominated convergence theorem because Ff and e−πϵ2|t|2 are both

Lebesgue integrable. We now define the function g(y) = ei2πxy−πϵ2y2 , which simplifies the de-
sired integral to limϵ→0+

∫∞
−∞(Ff)(t)g(t) dt or limϵ→0+

∫∞
−∞(

∫∞
−∞ f(τ)e−i2πtτ dτ)g(t) dt. Under

the conditions of Fubini’s Theorem (i.e. when f , g, and e−i2πtτ are Lebesgue integrable, which
is the case), we have limϵ→0+

∫∞
−∞(

∫∞
−∞ f(τ)e−i2πtτ dτ)g(t) dt = limϵ→0+

∫∞
−∞ f(τ)(

∫∞
−∞ g(t)e−i2πtτ dt) dτ .

Calculating the inner integral, which is the Fourier transform of g, we have∫ ∞

−∞
g(t)e−i2πtτ dt =

∫ ∞

−∞
e−i2π(τ−x)t−πϵ2t2 dt =

∫ ∞

−∞
cos(2π(τ − x)t)e−πϵ2t2 dt

=
1√
πϵ

∫ ∞

−∞
cos(

2
√
π(τ − x)

ϵ
t′)e−t′2 dt′ =

1

ϵ
e−

π(τ−x)2

ϵ2 .
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The imaginary component of the complex exponential vanishes because the sine function
is odd. Also, the final integral of an exponential times a cosine is a well-known result.

Therefore, limϵ→0+
∫∞
−∞ f(τ)(

∫∞
−∞ g(t)e−i2πtτ dt) dτ = limϵ→0+

∫∞
−∞ f(τ)(1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ . We
now need to evaluate this limit, which should ideally be equal to f(x).

Being a Gaussian integral, we know that
∫∞
−∞

1
ϵ
e−

π(τ−x)2

ϵ2 dτ = 1, so:

( lim
ϵ→0+

∫ ∞

−∞
f(τ)(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ)−f(x) = lim
ϵ→0+

(∫ ∞

−∞
f(τ)(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ − f(x)

∫ ∞

−∞

1

ϵ
e−

π(τ−x)2

ϵ2 dτ

)
=

lim
ϵ→0+

(∫ ∞

−∞
f(τ)(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ −
∫ ∞

−∞
f(x)(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ

)
= lim

ϵ→0+

∫ ∞

−∞
(f(τ)−f(x))(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ.

Since f is continuous, limτ→x f(τ) = f(x), so we know that, for any sufficiently small δ,
there exists some η such that |f(τ) − f(x)| < η when |τ − x| < δ, such that η goes to 0

when δ does. Let δ = ϵ
1
2 (so δ approaches 0 when ϵ does). We now prove that the final limit

shown above tends to 0, so we can take the absolute value of the integrand to calculate an
upper bound and break up the intervals integrated over:

lim
ϵ→0+

∫ ∞

−∞
(f(τ)− f(x))(

1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ ≤ lim
ϵ→0+

∫ ∞

−∞
|f(τ)− f(x)|(1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ =

lim
ϵ→0+

∫
|τ−x|<δ

|f(τ)− f(x)|(1
ϵ
e−

π(τ−x)2

ϵ2 ) dτ + lim
ϵ→0+

∫
|τ−x|≥δ

|f(τ)− f(x)|(1
ϵ
e−

π(τ−x)2

ϵ2 ) dτ.

By definition, |f(τ) − f(x)| < η whenever |τ − x| < δ, so the first integral is clearly

bounded by limϵ→0+
∫
|τ−x|<δ

η
ϵ
e−

π(τ−x)2

ϵ2 dτ ≤ limϵ→0+
∫∞
−∞

η
ϵ
e−

π(τ−x)2

ϵ2 dτ = limϵ→0+ η = 0.

Furthermore, since 1
ϵ
e−

π(τ−x)2

ϵ2 is bounded above by 1
ϵ
e−

πδ2

ϵ2 over the interval, the second

integral is bounded above by limϵ→0+
∫
|τ−x|≥δ

|f(τ) − f(x)|(1
ϵ
e−

πδ2

ϵ2 ) dτ . We defined δ to

be ϵ
1
2 , so this bound is equal to limϵ→0+

∫
|τ−x|≥ϵ

1
2
|f(τ) − f(x)|(1

ϵ
e−πϵ−1

) dτ . The expo-

nential no longer depends on τ , so we can take the factor out of the integral to obtain
(limϵ→0+

1
ϵ
e−πϵ−1

)(limϵ→0+
∫
|τ−x|≥ϵ

1
2
|f(τ)−f(x)| dτ) = (limϵ→0+

1
ϵ
e−πe−1

)(
∫∞
−∞ |f(τ)−f(x)| dτ).

The latter integral is finite because f is Lebesgue integrable, and limϵ→0+
1
ϵ
e−πϵ−1

approaches

0 because limϵ′→∞
ϵ′

eπϵ′ = limϵ′→∞
1

πeπϵ′ = 0 (where ϵ′ = 1
ϵ
) through a simple application of

l’Hopital’s rule. Both integrals approach 0, so our original integral limϵ→0+
∫∞
−∞(f(τ) −

f(x))(1
ϵ
e−

π(τ−x)2

ϵ2 ) dτ is 0. Thus,
∫∞
−∞(Ff)(t)ei2πxt dt = limϵ→0+

∫∞
−∞ f(τ)(1

ϵ
e−

π(τ−x)2

ϵ2 ) dτ =
f(x), which completes the proof of the Fourier Inversion Theorem.

Remark 1. The function 1
ϵ
e−

π(τ−x)2

ϵ2 converges pointwise to 0 for all τ ̸= x and to ∞ for
τ = x as ϵ approaches 0, and its integral over the real numbers is 1 for any ϵ. The limit is
often referred to as the delta function, although it cannot be defined rigorously without the
notion of distributions. The final step of the proof above is a demonstration of the sifting
property of the delta function.
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Notice that this inverse Fourier transform F−1 is defined very similarly to F — in fact,
only the sign in the exponential is different. We can therefore express the Fourier Inversion
Theorem as f(−x) = (F2f)(x). We thereby conclude that F4 is the identity operator, with
F3 being the inverse of F . The Fourier transform has similarities to a rotation function, not
for vectors, but rather for functions. More explicitly, F is an example of a unitary operator.

Definition 4. A Hilbert space is a vector space imbued with a real- or complex-valued inner
product ⟨·, ·⟩. So, for any elements x, y, z of a Hilbert space, we require that:

• Conjugate symmetry: ⟨y, x⟩ = ⟨x, y⟩

• Linearity in the first argument: ⟨ax+ bz, y⟩ = a⟨x, y⟩+ b⟨z, y⟩

• Positive definiteness ⟨x, x⟩ ≥ 0 (where the previous property implies that ⟨x, x⟩ = 0 if
and only if x = 0)

The Hilbert space we will be considering is L2(R), the set of square-integrable functions
(i.e. functions f such that

∫∞
−∞ |f(x)|2 dx is finite). The inner product ⟨f, g⟩ of two functions

f, g ∈ L2(R) is defined as
∫∞
−∞ f(t)g(t) dt — this integral is also known as the convolution

f ∗ g.

Definition 5. A unitary operator U is a surjective function from a Hilbert space to itself
that preserves the inner product, so ⟨Uf, Ug⟩ = ⟨f, g⟩ for any elements f, g of the Hilbert
space.

Theorem 4. (Parseval’s Theorem)
The Fourier transform F is a unitary operator on L2(R).

Proof. We prove that
∫∞
−∞ f(t)g(t) dt =

∫∞
−∞(Ff)(τ)(Fg)(τ) dτ for any two Lebesgue-integrable

functions f, g. By the Fourier Inversion Theorem, we have:∫ ∞

−∞
f(t)g(t) dt =

∫ ∞

−∞

(∫ ∞

−∞
(Ff)(τ)ei2πtτ dτ

)(∫ ∞

−∞
(Fg)(τ ′)e−i2πtτ ′ dτ ′

)
dt.

Note that the conjugation from g(t) can be distributed throughout the integral of g’s Fourier
transform representation. Under the assumptions of Fubini’s Theorem, we can rewrite the
product of integrals as the following double integral:∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(Ff)(τ)(Fg)(τ ′)ei2πt(τ−τ ′) dτ dτ ′ dt.

We rearrange the order of the integrations to get:∫ ∞

−∞
(Ff)(τ)

(∫ ∞

−∞

(∫ ∞

−∞
(Fg)(τ ′)e−i2πtτ ′ dτ ′

)
ei2πtτ dt

)
dτ.

By the Fourier Inversion Theorem, the inner double integral must be equal to simply (Fg)(τ).
We thus conclude that

∫∞
−∞ f(t)g(t) dt =

∫∞
−∞(Ff)(τ)(Fg)(τ) dτ , as desired. The fourier

transform does preserve the inner product of L2(R)
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Note that the Fourier transform of any f ∈ L2(R) must be square-integrable too. In fact,∫∞
∞ |f(t)|2 dt =

∫∞
∞ f(t)f(t) dt = ⟨f, f⟩ = ⟨Ff,Ff⟩ =

∫∞
∞ |(Ff)(t)|2 dt (this identity is also

known as the Plancherel theorem). Therefore, the Fourier transform is indeed a function
from L2(R) to itself.

4 Poisson Summation Formula

So far, we have mostly analyzed the properties of the Fourier transform on one function
alone. We now consider its effect on a periodic sum of the following type of function.

Definition 6. A Schwartz function is a smooth (infinitely differentiable) function such that
|f (n)(x)| ≤ cnN |x|−N for any nonnegative integer n and N .

Theorem 5. (Poisson Summation Formula)
If f is a Schwartz function,

∑∞
n=−∞ f(x+ n) =

∑∞
k=−∞(Ff)(k)e2πinx

Proof. The fact that f is a Schwartz function guarantees that the series
∑∞

n=−∞ f(x+ n) is
a Lebesgue-integrable function, specifically with period 1. |

∑∞
n=−∞ f(x+ n)| is bounded by∑∞

n=−∞ |f(x+ n)|, which is an integrable function over the interval [0, 1] because it is finite
over [0, 1]. Indeed, |f(x+n)| ≤ 1

|x+n|n−2 ≤ 1
2n−2 when n ≥ 2 and |f(x+n)| ≤ 1

|x+n|−n−3 ≤ 1
2−n−3

when n ≤ −3. So,
∑∞

n=−∞ |f(x+n)| ≤
∑1

n=−2 |f(x+n)|+2
∑∞

n=0
1
2n

=
∑1

n=−2 |f(x+n)|+4,
which is a finite upper bound.

Hence, we are allowed to derive the Fourier series coefficients of the function
∑∞

n=−∞ f(x+

n). We know that ak =
∫ 1

0
(
∑∞

n=−∞ f(t+n))e−i2πkt dt =
∫ 1

0
limm→∞(

∑m
n=−m f(t+n)e−i2πkt) dt.

Since |
∑m

n=−m f(x+n)e−i2πkx| ≤
∑m

n=−m |f(x+n)e−i2πkx| =
∑m

n=−m |f(x+n)| ≤
∑∞

n=−∞ |f(x+
n)| is an integrable function over [0, 1] as demonstrated above, we can interchange the integral
and the limit by the dominated convergence theorem, resulting in the following expression
for the coefficients:

ak = lim
m→∞

∫ 1

0

m∑
n=−m

f(t+ n)e−i2πkt dt = lim
m→∞

m∑
n=−m

∫ 1

0

f(t+ n)e−i2πkt dt =

∞∑
n=−∞

∫ n+1

n

f(t)ei2πkn−i2πkt dt =
∞∑

n=−∞

∫ n+1

n

f(t)e−i2πkt dt =

∫ ∞

−∞
f(t)e−i2πkt dt = (Ff)(k).

Note that ei2πkn = 1 because k, n are integers. Therefore, the Fourier series expansion for∑∞
n=−∞ f(x+ n) is

∑∞
k=−∞(Ff)(k)e2πikx, and now we must only verify convergence. Since,

as frequently mentioned,
∑∞

n=−∞ |f(x + n)| is finite, we know that (
∑∞

n=−∞ f(x + n))′ =∑∞
n=−∞ f ′(x + n) by Tannery’s theorem, implying that

∑∞
n=−∞ f(x + n) is smooth. Thus,

by the Dirichlet-Jordan criterion, the function
∑∞

n=−∞ f(x+n) must be equal to its Fourier
series

∑∞
n=−∞(Ff)(n)e2πinx.

Corollary 1. The Poisson summation formula is often evaluated at x = 0 to obtain∑∞
n=−∞ f(n) =

∑∞
k=−∞(Ff)(k) — i.e. a sum of a Schwartz function over the integers is

invariant under a Fourier transform (and its inverse, for that matter).
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Example 3. An elegant application [3] of the Poisson summation formula is in the evaluation
of

∑∞
n=−∞

2c
c2+4π2n2 for complex c with positive real part. We notice that the Fourier transform

of e−c|x| is
∫∞
−∞ e−c|t|e−i2πxt dt =

∫ 0

−∞ ect−i2πxt dt +
∫∞
0

e−ct−i2πxt dt = [ 1
c−i2πx

ect−i2πxt]0−∞ +

[ 1
−c−i2πx

e−ct−i2πxt]∞0 = ( 1
c−i2πx

−0)+(0− 1
−c−i2πx

) = 2c
c2+4π2n2 because ℜc > 0. By the Poisson

summation formula,
∑∞

n=−∞
2c

c2+4π2n2 =
∑∞

k=−∞ e−c|k|, and since the latter series is geometric,

we can calculate it explicitly as −1+2
∑∞

k=0 e
−c|k| = −1+ 2

1−e−c = 1+e−c

1−e−c = ec+1
ec−1

(i.e. tanh c).

We have now demonstrated that
∑∞

n=−∞
2c

c2+4π2n2 = ec+1
ec−1

. When evaluated as c = π, we

also quickly prove that
∑∞

n=1
1

1+n2 = 1
2
(−1 +

∑∞
n=−∞

1
1+n2 ) =

1
2
(−1 + π

∑∞
n=−∞

4π
4π2+4π2n2 ) =

1
2
(−1+π e2π+1

e2π−1
), which is far easier than the alternative derivation with a path integral around

poles in the complex plane.

5 The Heat Equation — A Historical Application

We now consider the first ever application of Fourier theory [1]: In his 1822 The Analytical
Theory of Heat, the physicist Joseph Fourier derived a differential equation that describes
the evolution of the temperature u(x, y, z, t) at the position x, y, z of a body over the time t.

Fourier’s reasoning is based on classical and not statistical thermodynamics, so all vari-
ables are continuous and not discrete. (As a historical aside, he also relied on the obsolete
caloric theory, which treated heat as a physical substance.) To derive the heat equation, let
u(x, y, z, t) be the temperature of a body at the position (x, y, z) at time t. At a sufficiently
small local scale (in a dx dy dz volume), the body is in thermal equilibrium, so we can assume
that the heat transferred from one region to another, infinitessimally close one is proportional
to the temperature gradient between the regions (i.e. h⃗eat transfer(x, y, z, t) = κ1(∇u(x, y, z, t))
for a positive constant κ1). Furthermore, the change in temperature over time in this lo-
cal region is proportional to the divergence of the heat transferred (i.e. ∂

∂t
u(x, y, z, t) =

κ2(∇ • h⃗(x, y, z, t)) for a positive constant κ2). Combining both relationships, we have
∂
∂t
u(x, y, z, t) = ∇ • (∇u(x, y, z, t)) = κ1κ2(

∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
)u(x, y, z, t). Thus, for some con-

stant k = κ1κ2 (that is of course positive), the differential equation that describes the change
of the temperature across the body over time is:

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
.

Of course, we do assume that the heat transfer at the surface of the body is negligible, so
there is little to no energy loss — we could also consider unrealistic infinitely large bodies.
For the sake of simplicity, we will only be considering the one-dimensional version of the heat
equation, ∂u

∂t
= k ∂u

∂2x
, which applies to any body in which temperature does not vary in the

y and z directions. We also impose the boundary conditions that both u(0, t) and u(l, t) are
0 (or any constant determined by the fixed temperature of the surrounding environment),
which models a thin rod whose ends are of equal temperature, and that u(x, 0) is equal to a
certain function f(x), which represents the distribution of temperature at some initial state.
Although f is technically only defined over [0, l], it can be generalized to a periodic function
over all real numbers such that f(x) = f(x+ l) (as f(0) = f(l)).
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Ignore the u(x, 0) = f(x) condition at this point. Solving the heat equation when u
is a separable function (i.e. when u can be expressed as X(x)T (t)) is standard procedure:

The differential equation becomes X(x)T ′(t) = kX ′′(x)T (t), or 1
k
T ′(t)
T (t)

= X′′(x)
X(x)

. Since one side

depends on t and the other on x, this equation can only be satisfied if 1
k
T ′(t)
T (t)

and X′′(x)
X(x)

equal a
constant −ℓ, which must be negative, as otherwise T and hence u diverge to∞ over time. We
then obtain the linear differential equations T ′(t)+kℓT (t) = 0 and X ′′(x)+ℓX(x) = 0, which

have the general solutions T (t) = T0e
−kℓt and X(x) = X1e

i
√
ℓx +X2e

−i
√
ℓx = X ′

1 cos(
√
ℓx) +

X ′
2 sin(

√
ℓx). Thanks to the boundary conditions, the only possibilities for X(x) are of the

form X0 sin(
nπ
l
x) for integer n ≥ 0, forcing ℓ to be n2π2

l2
. We obtain the following solutions

to the heat equation for each possible n:

un(x, t) = X(x)T (x) = U0e
− kn2π2

l2
t sin(

nπ

l
x).

We can create linear combinations of these solutions to obtain the general and not necessarily

separable solution C0+
∑∞

n=1Cne
− kn2π2

l2
t sin(nπ

l
x), where some values of n may be redundant

(e.g. if l is an integer) and so Cn = 0. This kind of expression should be familiar —
indeed, it is a trigonometric polynomial and is a Fourier series, so we hope that the initial
condition u(x, 0) = f(x) can fix the coefficients Cn. Since u(x, 0) = C0+

∑∞
n=1 Cn sin(

nπ
l
x) =

C0+
∑∞

n=1Cn
ei

nπ
l

x−e−i nπ
l

x

2i
must be equal to f(x) and since the solution has a period of l, we

conclude that the Cn must equal 2i
l

∫ l

0
f(x)e−inπ

l
x dx, the coefficients in the Fourier series for

f . (The only exception is C0, which is simply
∫ l

0
f(x) dx.) Of course, the Fourier series u(x, 0)

only converges to the initial state f(x) pointwise under the Dirichlet-Jordan criterion. If f
is differentiable and integrable (which are reasonable assumptions for real-life temperature
distributions), then the pointwise convergence is guaranteed. Fourier’s initial 1822 derivation
did not show that the general solution always converges, resulting in controversy among the
foremost physicists at the time, including Lagrange, Laplace, and Poisson (the same physicist
who proved the aforementioned summation formula).

As an example, consider the evolution of the following body, of which only one segment
had been heated, over time.

We can take a similar approach to derive a set of solutions to the three-dimensional
heat equation, if we again assume that the body has a temperature of 0 (or some other
constant) over the entire boundary. However, we can not easily apply the Fourier series as
the initial state function would have three variables, and if we generalize the series to such
functions (through double or triple integrals of a similar form), we would need to prove that
the appropriate convergence criteria hold.

6 Conclusion

We have seen that the Fourier series for a given function can decompose it into a summation
of exponentials of different integral frequencies, and this sum can accurately approximate
the original function as long as certain conditions (e.g. the Dirichlet-Jordan criteria) are
satisfied. A continuous counterpart is the Fourier transform, which describes the coefficients
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for the required exponentials of any frequency. The summation is now replaced by a con-
tinuous integral, and the latter, according to the Fourier Inversion Theorem, is equal to the
original function. Some implications of this result we have proven include the Fourier trans-
form’s unitarity or the Poisson Summation Formula. We also demonstrated the utility of
Fourier series in solving partial differential equations, specifically the heat equation of ther-
modynamics, but unfortunately we are not able to cover all the indispensable applications
of Fourier analysis throughout other fields: number theory (functional equation derivation
for the Riemann zeta function), quantum mechanics (Schrödinger wave equation solutions),
statistics (serial correlation of time series), and computer science (compression of information
in images), among many others.
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