
MODULAR FORMS AND SUMS OF SQUARES
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Abstract. In this paper, we will introduce modular forms, functions on the upper half
plane which satisfy a certain transformation property under the action of the modular group
SL2(Z), as well as a holomorphy condition. We will see important examples of modular forms
with number theoretic applications. We then discuss a technical “valence formula,” which
relates the Laurent series orders of a modular form at points in the orbits of our action,
and an analogous formula for congruence subgroups of SL2(Z). These formulas allow us to
find the dimension of spaces of modular forms as C-vector spaces. We apply these technical
results to the problem of counting the number of ordered pairs of k integers whose squares
sum to a certain positive integer n, specifically proving the k = 4 case and providing a
framework for higher cases.

1. Introduction

It is a classic theorem of Lagrange that every positive integer n can be written as the sum
of four nonnegative integer squares. For example, with n = 26, we have:

26 = 52 + 12 + 02 + 02 = 25 + 1 + 0 + 0

and also

26 = 42 + 32 + 12 + 02 = 16 + 9 + 1 + 0.

A natural question that arises is the number of distinct ways we can write a given positive
integer n in this way. More generally, we ask for the number of ways to write n as a sum of
k squares, where k is a positive integer.

Definition 1.1. We define the function rk(n) by

rk(n) = #{(x1, x2, . . . , xk) ∈ Zk|x2
1 + x2

2 + · · ·+ x2
k = n}.

The following theorem of Jacobi answers our question for k = 4.

Theorem 1.2. We have

r4(n) = 8
∑
d|n
4∤d

d.

To prove this theorem, we will introduce the theory of modular forms, functions which
display a certain invariance property with respect to action by the modular group SL2(Z).
This route will allow us to give a more natural proof of the result than standard elementary
methods with the Jacobi Triple Product, and hint towards generalizations to other k.
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2. The Modular Group and Upper Half Plane

We begin by reviewing and expanding on some basic background of SL2(Z) acting on the
upper half plane H.

Definition 2.1. The modular group SL2(Z) is the group of 2× 2 matrices(
a b
c d

)
with determinant 1 and entries in Z.

One easily verifies that this construction is in fact a group, and in particular, that all
matrices in SL2(Z) have inverses with integer entries. It turns out that SL2(Z) is finitely
generated by two elements. Our proof is due to [3].

Theorem 2.2. The group SL2(Z) is generated by the elements

(
1 1
0 1

)
and

(
0 −1
1 0

)
.

Proof. Let A =

(
1 1
0 1

)
and B =

(
0 −1
1 0

)
, and let G be the subgroup of SL2(Z) generated

by the two elements. Observe that

BA−1B−1 =

(
1 0
1 1

)
=⇒ BA−nB−1 =

(
1 0
n 1

)
.

Combined with the fact that B2 =

(
−1 0
0 −1

)
, we get that G contains all elements of SL2(Z)

of the form

(
a 0
c d

)
. Suppose for the sake of contradiction that G is not all of SL2(Z). Let

b0 denote the minimal magnitude of b such that

(
a b
c d

)
∈ SL2(Z)−G. It follows that b0 is

nonzero. For some α in SL2(Z)−G with top entries a0 and b0, we take some integer n such
that |a0 − nb0| < b0. Then, the top right entry of αB−1An is given by a0 − nb0, and thus
αB−1An ∈ G. However, since A and B are invertible, this implies that α ∈ G, contradicting
our assumption that α ∈ SL2(Z)−G. ■

We recall the standard group action of SL2(Z) on the upper half plane H by mobius
transformations: (

a b
c d

)
(z) =

az + b

cz + d
.

The proof that this map respects the group operation of SL2(Z) can be done, by example,
with direct computation. We can check that this action maps elements of H back to H via
the formula

ℑ(αz) = ℑ(z)
|cz + d|2

.

Note that the non-identity matrix −I =

(
−1 0
0 −1

)
is in the kernel of this action, and

is the only such nonidentity matrix. Thus, restricting this action to the quotient group
PSL2(Z) = SL2(Z)/{I,−I} makes the action faithful (Some authors define the modular
group as PSL2(Z) rather than SL2(Z) for this reason).
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3. Modular Forms

In this section, we define and motivate modular forms, our main objects of study.

Definition 3.1. Let k be an integer and f be a meromorphic function on the upper half
plane H. We say that f is weakly modular of weight k if

f(αz) = (cz + d)kf(z) for all z ∈ H and α =

(
a b
c d

)
∈ SL2(Z).(3.1)

Note that using α = −I (with I denoting the 2 × 2 identity) in the equation (3.1) gives
f(z) = (−1)kf(z), implying that no nonzero weakly modular functions of odd weight exist.
Thus, in what follows we assume k is even. At first glance, this definition seems strange and
unnatural. We observe the following property of the definition.

Proposition 3.2. If equation (3.1) is satisfied for two elements α, β of SL2(Z), it is satisfied
for their product αβ.

Proof. For any γ =

(
a b
c d

)
∈ SL2(Z) and z ∈ H, we define

j(γ, z) = cz + d.

Then, our modularity condition becomes f(γ, z) = j(γ, z)kf(z). By the fact that SL2(Z)
operates through fractional linear transformations as a group action on H, we have:

j(αβ, z) = j(α, βz)j(β, z).

Thus,

f((αβ)z) = f(α(βz)) = j(α, βz)f(βz) = j(α, βz)j(β, z)f(z) = j(αβ, z)f(z)

by consectively applying (3.1) for α and β. Comparing the left and right hand sides gives
equation (3.1) for αβ, as desired. ■

Remark 3.3. The function j(γ, z) is often known as the factor of automorphy.

Corollary 3.4. Let f be meromorphic on H. Then, f is weakly modular of weight k if and
only if it satisfies the following relations:

f(z + 1) = f(z)(3.2)

f

(
−1

z

)
= zkf(z)(3.3)

for all z ∈ H.

Proof. Let A and B denote the same generators of SL2(Z) as in Theorem 2.2. If f is weakly
modular of weight k, using the matrices A and B respectively as α in equation (3.1) gives the
two relations above. Conversely, since A and B generate SL2(Z), it suffices by Proposition
3.2 to verify the weak modularity equation for just these two matrices and their inverses.
Checking A−1 gives f(z − 1) = f(z), which is equivalent to (3.2). Checking B−1 gives
f
(

1
−z

)
= (−z)kf(z) = zkf(z), which is equivalent to (3.3). ■

Corollary 3.3 gives a much more natural condition which is equivalent to weak modularity.
Note that weak modularity of weight 0 is the same as invariance under SL2(Z) by our proof
of proposition 3.2.
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Further motivation comes from a connection to functions that behave well with complex
lattices, which we leave out in this paper. More details can be found in [1]. While on the
topic, we state a result about lattices which will be useful later. We do not prove this result
here, instead referring to [2].

Proposition 3.5. For ω′
1, ω

′
2 ∈ C, we have Zω1 +Zω2 = Zω′

1 +Zω′
2 and

ω′
1

ω′
2
∈ H if and only

if (
ω′
1

ω′
2

)
= α

(
ω1

ω2

)
for some α ∈ SL2(Z).

Our definition of modular forms comes from an addition of useful holomorphy conditions
to the transformation properties of Definition 3.1. Let f denote a weakly modular function
of weight k. By the additive periodicity in equation (3.2), we can write

f(z) = g
(
e2πiz

)
for some meromorphic function g.

Definition 3.6. A weakly modular function f is holomorphic at ∞ if g extends to a holo-
morphic function at 0.

The reference to ∞ comes from the fact that as e2πiz → 0, writing z = x + yi gives:
e−2πy · e2πix approaches 0, meaning y goes to ∞. If this condition is satisfied, we write
f(∞) = g(0). Definition 3.4 allows us to define modular forms.

Definition 3.7. Let k be an integer and f be a holomorphic function on H. If f is weakly
modular of weight k and holomorphic at ∞, we call f a modular form for the group SL2(Z)

It is easy to see from the definition that the set of modular forms of weight k form a C-
vector space. With some computation, we can also verify that modular forms form a graded
ring with their weights. In the next sections, we will see two important examples of modular
forms. One special case we would like to distinguish is when f(∞) = 0.

Definition 3.8. A cusp form of weight k (for the group SL2(Z)) is a modular form f of
weight k such that f(∞) = 0.

We specificy “for SL2(Z)” in Definitions 3.5 and 3.6 because it is possible to define modular
forms for finite-index subgroups Γ of SL2(Z) by restricting α to come from Γ in equation
(3.1). We will see an important example of a class of subgroups we would like to consider in
section 5.

4. Eisenstein Series

Our first example of nonzero modular forms is a class of functions we are already familiar
with from the coefficients of the Laurent series of the Weiererstrass ℘ function.

Definition 4.1. Let k ≥ 4 be a positive even integer. Let Λ be a lattice in the complex
plane. Then the series

Gk(Λ) =
∑

γ∈Λ,γ ̸=0

1

γk

is called the Eisenstein series of index k.



MODULAR FORMS AND SUMS OF SQUARES 5

By considering lattices Λz generated by 1 and z, we can view Eisenstein series as functions
on H, which we denote Gk(z). With comparison to a double integral, we can prove that these
functions are absolutely convergent (the restriction k ≥ 4 arises by failure of this convergence

for k = 2). By Proposition 3.5, for α =

(
a b
c d

)
∈ SL2(Z), we get that the lattice generated

by az + b and cz + d is the same as Λz. Thus,

Gk(z) =
∑

(m,n)̸=0

1

m(az + b) + n(cz + d)

= (cz + d)−k
∑

(m,n)̸=0

1

m(αz) + n

= (cz + d)−kGk(αz)

proving weak modularity of weight k for Eisenstein series. For a fixed z ∈ H, let q = e2πiz.
We recall the following result about Eisenstein series:

Lemma 4.2. For even k ≥ 4 and z ∈ H, we have

Gk = 2ζ(k) + 2
(−1)

k
2 (2π)k

(k − 1)!

∞∑
r=1

σk−1(r)q
r.(4.1)

where σn(r) is the sum of the nth powers of the divisors of r.

Theorem 4.3. The Eisenstein series Gk(z) is a modular form of weight k.

Proof. Viewing (4.1) as a convergent power series in q, we see by analytic and holomorphic
being equivalent that Ek is holomorphic (making the appropriate change of variables through
composition back to z). Furthermore, we see that we see that we can analytically extend
the right hand side as a function of q to a holomorphic function at 0, with Ek(∞) = 2ζ(k).
Since we have already shown weak modularity of weight k, Ek(z) being a modular form of
weight k follows. ■

5. Congruence Subgroups

We define an important class of subgroups of SL2(Z), especially relevant to number theo-
retic applications of modular forms. We construct two important examples of modular forms
for these subgroups, which will be important in our proof of Theorem 1.2.

Definition 5.1. Let N be a positive integer. The principal congruence subgroup of level N
is the group

Γ(N) =

{
α ∈ SL2(Z)| α ≡

(
1 0
0 1

)
(mod N),

}
where matrix congruence is taken entry-wise.

Definition 5.2. A congruence subgroup is a subgroup Γ of SL2(Z) containing Γ(N) for some
N , which we call the level of Γ.

For our purposes, the most important example of a congruence subgroup is given by

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)| c ≡ 0 (mod N)

}
.
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Note that for N |M , we have the inclusions

Γ(M) ⊂ Γ0(M) ⊂ Γ0(N).

We see two important examples of modular forms for congruence subgroups, first finding a
way to reconcile the notion of the Eisenstein series of index 2.

Definition 5.3. We define the normalized Eisenstein series Ek by:

Ek(z) =
Gk(z)

2ζ(k)
.

Despite G2(z) not converging absolutely, we can still meaningfully talk about E2(z) as a
holomorphic function. It turns out that E2(z) fails to satisfy weak modularity, and thus is
not a modular form. In particular, E2(z) satisfies the transformation property

z−2E2

(
−1

z

)
= E2(z)−

1

4πiz
(5.1)

which contradicts relation (3.3). We can, however, show that

En
2 (z) = E2(z)− nE2(nz)

is a modular form of weight 2 for the congruence subgroup Γ0(n). The proof of weak
modularity is a simple computation based on (5.1) and the generation of SL2(Z) by A and B
from earlier, while holomorphy requires some more technical work. We now look at another
example, which is familiar as a special case of the more general θ function:

Definition 5.4. We define the theta function θ(z) by

θ(z) =
∞∑

n=−∞

qn
2

with q defined as in earlier sections.

We know that θ is a holomorphic function on H. Most of the reason we care here about
the θ function is due to its powers.

Proposition 5.5. Let k be a positive integer. The θ function satisfies:

θ(z)k =
∞∑
n=0

rk(n)q
n.

This result is easy to see by considering the direct multiplication and regrouping terms. We
get one qn term with coefficient 1 for each combination of squares summing to n. Moreover,
θk is a modular form over a congruence subgroup for even k, though we will not discuss the
proof here.

Theorem 5.6. Let k be an even positive integer. Then the function θk is a modular form
of weight k

2
for the congruence subgroup Γ0(4).
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6. Valence Formula and Dimension

In this section we discuss a technical result and its analog over congruence subgroups of
SL2(Z). These results are both powerful and important in their own right, but also give us
information about the dimension of the C-vector space of modular forms of weight k.

Let f be a meromorphic function on H, and p a point in H. Then, we can write f as a
Laurent series around p:

f(z) = an(z − p)n + an+1(z − p)n+1 + . . .

for some n ∈ Z and ai ∈ C. We call n the order of valuation or order of f at p, and denote
it νp(f). If f is weakly modular, equation (3.1) along with the fact that νp(cz + d) = 0
implies that ναp(f) = νp(f) for any α ∈ SL2(Z) (the name and notation derive from ν being
a discrete valuation on the field of Laurent series). Thus, order only depends on p’s orbit
under the action by SL2(Z). We write ν∞(f) to denote the order at 0 of the function g
defined in section 3. The following miraculous formula, known as the valence formula relates
the orders of valuation of a weakly modular function f at each of these orbits.

Theorem 6.1. Let f be a (nonzero) meromorphic function on H, which is weakly modular
of weight k and meromorphic at ∞ (defined analogously to holomorphic). Then, we have:

ν∞(f) +
1

2
νi(f) +

1

3
νρ(f) +

∑
p∈S

νp(f) =
k

12
,(6.1)

where S is a set with one representative for each orbit of SL2(Z) acting on H besides those

for i and ρ = e
2πi
3 .

The proof is long and not included here. See [4] for the complete proof. The idea is to
evaluate a certain contour integral, where the sum of the orders naturally appears as a result
of using the argument principle.

Definition 6.2. We define Mk as the C-vector space of modular forms of weight k for
SL2(Z).

Theorem 6.1 allows us to derive a powerful and surprising about the dimension of Mk. We
require one additional lemma before we prove the main theorem.

Lemma 6.3. Let Sk denote the vector space of cusp forms of weight k. Then, the vector
spaces Sk+12 and Mk are isomorphic, implying

dimSk+12 = dimMk.

Proof. Define the modular form ∆ by

∆ =
(240E4)

3 − (504E6)
2

1728
.

Here, the seemingly random coefficients are chosen so that the constant term vanishes in
the q-expansion of ∆, which we can see by computation. We get that ∆ is a cusp form of
weight 12. Applying Theorem 6.1, we get that all orders must be nonnegative by ∆ being
holomorphic, and thus ν∞(∆) = 1, with all other orders equal to 0. Equivalently, ∆ has a
simple zero at ∞ as its only zero. Thus, it follows that left multiplation by ∆:

f → ∆ · f



8 JAMES PAPAELIAS

defines a vector space isomorphism between Mk and Sk+12. We can easily check the linear
map properties, and bijectivity follows by invertibility. From there, the result dimSk+12 =
dimMk follows. ■

Theorem 6.4. Let k be an even positive integer. Then we have:

dimMk =

{⌊
k
12

⌋
k ≡ 2 (mod 12)⌊

k
12

⌋
+ 1 k ̸≡ 2 (mod 12).

Proof. Equation (6.1), together with the fact that all orders are nonnegative, implies that
there are no nonzero modular forms of negative weight and that M0 = C, giving dimM0 = 1.
Considering denominators, we also get that there are no nonzero modular forms of weight 2
(providing another verification that E2 is not a modular form). Let k ≥ 4 be an even positive
integer. From our proof of Theorem 4.3, we know that Eisenstein series do not vanish at ∞.
Thus, we can write any modular form of weight k as a linear combination of a cusp form of
weight k and Ek, giving

Mk = Sk ⊕ C · Ek

Taking dimensions, we get
dimMk = dimSk + 1.

By Lemma 6.3, we get dimMk = dimMk−12 + 1. Using induction with our cases above as
base cases, we get the desired form for dimMk. ■

An analogous valence formula exists for modular forms for congruence subgroups of
SL2(Z). It’s statement is much longer and more technical, and it’s proof is similarly la-
borious, using Theorem 6.1 and some additional results from group theory. We refer to [1]
for its statement and proof.

Definition 6.5. Let Γ be a congruence subgroup of SL2(Z). We define Mk(Γ) as the the
C-vector space of modular forms of weight k for the subgroup Γ.

Using a similar line of reasoning to Theorem 6.3, we obtain a bound on the dimension of
Mk(Γ):

Theorem 6.6. Let [SL2(Z) : Γ] denote the index of Γ in SL2(Z). We have

dimMk(Γ) ≤ 1 +

⌊
k

24
[SL2(Z) : Γ]

⌋
.

Most commonly, these indices are calculated by viewing congruence subgroups as kernels
of certain group homomorphisms. For a much deeper discussion of analyzing dimension of
modular form vector spaces, including an explicit (complicated) formula for dim Mk(Γ), see
chapter 3 of [2].

7. Sums of Squares

Using all our previously developed theory, we are ready to tackle the proof of Theorem
1.2, which we restate below. In particular, we combine our results about Eisenstein series
and the θ function with the dimension bounds from the previous section.

Theorem 1.2. We have
r4(n) = 8

∑
d|n
4∤d

d.
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Proof. Let Γ0(4) be as defined in section 5. We can compute that [SL2(Z) : Γ0(4)] = 12
by considering a sequence of canonical group homomorphisms whose kernels form a chain
of inclusions to Γ0(4). Thus, by Theorem 6.5, dimM2(Γ0(4)) ≤ 1 + ⌊1⌋ = 2. Since we
can exhibit the two linearly independent elements, E2

2 and E4
2 , this dimension is exactly

two, and moreover E2
2 and E4

2 are a basis for the vector space M2(Γ0(4)). Furthermore, by
Theorem 5.6, the exponentiated θ function θ4 is a modular form of weight 2 for Γ0(4), and
thus θ4 ∈ M2(Γ0(4)). Therefore, we can write θ4 as a linear combination:

θ4 = c1E
2
2 + c2E

4
2

for some c1, c2 ∈ C. Using the q-expansions determined by Lemma 4.2 (normalized as in
Definiton 5.3) and Proposition 5.5, we can write:

θ4 = 1 + 8q + 24q2 +O(q3)

E2
2 = −1− 24q − 24q2 +O(q3)

E4
2 = −3− 24q − 72q2 +O(q3)

Comparing early coefficients gives c1 = 0 and c2 = −1
3
. Thus,

θ4 = −1

3
E4

2 = 1 + 8
∑
n≥1

(
σ(n)− 4σ

(n
4

))
.

where we use the q-expansion of E4
2 . By proposition 5.5, we compare coefficients with θ4 to

get

r4(n) = 8
(
σ(n)− 4σ

(n
4

))
= 8

∑
d|n
4∤d

d.

■

We note that our proof method generalizes to get analogous identities for some even
k > 4. In general, we compute the dimension of M k

2
(Γ0(4)) using the bounds in section 6

and demonstration of linearly independent elements. Then, the remainder of our work is
computation of linear combinations, as above. In particular, the proof of an analogous result
for k = 8 proceeds nearly exactly as above. Using the dimension formula found in [2] makes
our method possible for k in which we don’t have equality with the bound of Theorem 6.5.
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