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1. Introduction

Additive number theory is the branch of number theory which studies subsets of
the integers and how they behave under addition. The circle method is a tool which
helps solve problems in additive number theory using complex analysis. The circle
method was originally developed in 1918 by Ramanujan and G. H. Hardy as they
were investigating the partition function p(n), although Ramanujan had developed
a more basic form of the circle method far before this. After Ramanujan’s death,
Hardy and Littlewood developed the method further and used to find to find the
asymptotic formula’s found in Waring’s Problem. A little later, Ivan Vinogradov
realized that the infinite series used in the circle method could be replaced with a
Fourier series, transforming the method into one using exponential sums.

The circle method gives an integral representation for the coefficients of a gen-
erating function which represents the problem we are trying to solve. The integral
can then be split up into main terms and error terms.

In this paper, we discuss the key ideas of the circle method, and then use it to
walk the reader through a derivation of the asymptotic formula for the partitions.
This solution is not Hardy and Ramanujan’s original result, but instead is a sim-
plified version devised by D. J. Newman. Finally, we briefly touch upon some other
problems which the circle method can be applied to.

2. Partitions

We first begin by describing the problem of partitions. A partition of an integer
n is a decomposition of n into a sum of integers where order does not matter. For
example, if we consider the number 6, then some examples of partitions are

1 + 1 + 1 + 3

2 + 2 + 2

1 + 1 + 4

Note that 1 + 3 + 1 + 1 is not considered a distinct partition and is the same as
1 + 1 + 1 + 3. Therefore, we write a partition with the parts in ascending order.
We define the function p(n) to be the number of partitions of n. So what is p(n)?
This proves to be a tricky problem. The first thing which we may think to do is to
find a generating function for the partitions.

Definition 2.1 (Generating Function). Let an be a sequence. Then the generating
function for an is

F (z) =

∞∑
z=0

anz
n
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Essentially, we encode p(n) as the coefficient of the xn term in the generating
function. This forces us to have |z| < 1

Theorem 2.2. Let P (x) denote the generating function for the partitions. Then,

P (x) =

∞∑
n=0

p(n)xn =

∞∏
n=1

1

1− xn

Proof. For any integer n, we can use it 0, 1, 2, 3 · · · times in a partition. We can
express this as the generating function

1 + xn + x2n + x3n · · · = 1

1− xn

When we multiply the generating functions over all integers n, we get the generating
function for the partitions. Therefore,

∞∑
k=0

p(n)xn =
1

1− x
· 1

1− x2
· 1

1− x3
· · · =

∞∏
n=1

1

1− xn

■

When treating this function in a purely formal sense, we do not have to worry
about convergence. So, now that we have the generating function, what do we do
with it? To continue, we will use the circle method.

3. The Circle Method

The main problem which the circle method seeks out to solve is problems of the
form:

Question 3.1. Given A ⊂ N and s ∈ Z>0, what is

{a1 + a2 · · ·+ as : ai ∈ A} ∩ N

This question essentially asks what natural numbers can be written as a sum of
elements from A.

Definition 3.2. Let r(n, s,A) be the number of ways in which we can write n as
the sum of s elements of A.

Notice that

p(n) =

∞∑
s=1

r(n, s,N)

From here on, we assume that A is an infinite set, as otherwise the problem is not
particularly interesting.

The circle method proceeds as follows. To solve our problem, we first construct
a generating function which represents that problem. Then, we use a contour
integral and the generating function to represent the solution to this problem.
Next we split this integral up into ”Major” and ”Minor” arcs, which are essentially
main terms and error terms. The integral over the major arcs are evaluated (often
asymptotically), and the integral over the minor arcs is bounded so that its effect
is negligible in comparison to the major arcs.



THE HARDY LITTLEWOOD CIRCLE METHOD 3

Theorem 3.3. Consider Question 0.1, and let F (z) be the generating function

F (z) =
∑
n∈A

zn

Then, we know that for all ρ ∈ (0, 1),

r(n, s,A) =
1

2πi

∫
|z|=ρ

F (z)s

zN+1
dz

Proof. We have that∫
|z|=ρ

F (z)s

zN+1
dz =

∫
|z|=ρ

( ∑
n∈A

zn
)s

z−N−1dz =

∫
|z|=ρ

( ∞∑
k=0

r(k, s, A)zk
)
z−n−1dz

=

∫
|z|=ρ

( ∞∑
k=0

r(k, s, A)zk−n−1

)
dz =

∞∑
k=0

r(k, s, A)

∫
|z|=ρ

zk−n−1dz = 2πi·r(n, s,A)

This comes from the residue theorem, as the residues of zk−n−1 are 0 unless k = n.
Therefore

1

2πi

∫
|z|=ρ

F (z)s

zN+1dz
=

1

2π
· 2πi · r(n, s,A) = r(n, s,A)

■

The next formulation of the circle method is due to Vinogradov. He replaced
the generating function with a Fourier Series:

Theorem 3.4. Consider Question 0.1, and let G(z) be the generating function

G(z) =
∑
a∈A

e2πiaz

Then,

r(n, s,A) =

∫ 1

0

G(z)s

e2πinz
dz

This proof is not relevant, so we omit it from our discussion.

4. Back to Partitions

Now we will apply the circle method the integer partitions. We aim to find an
approximation for the generating function of the partitions and bound the difference
using the circle method. Remember our generating function for the partitions:

P (z) =

∞∏
n=1

1

1− zn

In this instance, we do care that this generating function converges. Since we
already used a summation of geometric series while finding the generating function,
we require |z| < 1.

Lemma 4.1.

P (z) < e
1

|1−z|+
1

1−|z|
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Proof. Let z ∈ C where |z| < 1. This means that 1 − zn is in the open right half
plane, meaning that (1 − zn)−1 is also in the open right half plane. This means
that logarithms are well defined.

Taking the logarithm, we get:

log(P (z)) =

∞∑
n=1

− log(1− zn) =

∞∑
n=0

∞∑
k=1

znk

k
=

∞∑
k=1

1

k

∞∑
n=1

znk =

∞∑
k=1

zk

(1− zk)k

These steps are justified, since the series converges absolutely when |z| < 1. There-
fore, the sum can be rearranged.

The next step is the bound the logarithm. By the triangle inequality:

| log(P (z))| ≤
∞∑
k=1

|z|k

|1− zk|k
=

|z|
|1− z|

+

∞∑
k=2

|z|k

|1− zk|k
≤ |z|

|1− z|
+

∞∑
k=2

|z|k

(1− |z|k)k

=
|z|

|1− z|
+

1

1− |z|

∞∑
k=2

|z|k

(1 + |z|+ |z|2 · · · |z|k−1)k

=
|z|

|1− z|
+

1

1− |z|

∞∑
k=2

1

(|z|−k + |z|−k+1 + |z|−k+2 · · · |z|−1)k

≤ |z|
|1− z|

+
1

1− |z|

∞∑
k=2

2

(k)(k + 1)k
≤ |z|

|1− z|
+

1

1− |z|

∞∑
k=2

1

k2

≤ 1

|1− z|
+

1

1− |z|
Finally, from here, we get that

|P (z)| = |elog(P (z))| = |eℜ(log(P (z)))| = eℜ(log(P (z))) ≤ e| log(P (z))| < e
1

|1−z|+
1

1−|z|

■

In addition to giving us the estimate we want, this additionally shows that |z| ≤ 1
is sufficient for this to converge.

The next thing we want to do is to approximate P (z) when z is close to 1.

Definition 4.2.

ϕ(z) =

(
1− z

2π

)−1/2

e
π2

12 (−1+ 2
1−z )

Lemma 4.3. Whenever |z| < 1 and |1− z| ≤ 2(1− |z|)

P (z) = ϕ(z)(1 +O(1− z))

Proof. Recall the identity

log(P (z)) =

∞∑
k=1

zk

(1− zk)k

We proceed by setting z = e−w where |ℑw| ≤ π. Then, we have that

log(P (e−w)) =

∞∑
k=1

e−kw

(1− e−kw)k
=

∞∑
k=1

1

(ekw − 1)k
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If we add and subtract 1
2 log(1− e−w) + π2

6w on one side, we get

log(P (z)) =
1

2
log(1− e−w) +

π2

6w
+

1

2

∞∑
k=1

e−kw

k
− 1

w

∞∑
k=0

1

k2
+

∞∑
k=1

1

(ekw − 1)k

=
1

2
log(1− e−w) +

π2

6w
+ w

∞∑
k=1

1

(ekw − 1)wk
− 1

(wk)2
+

e−kw

2wk

For convenience let g(u) = 1
(eu−1)u − 1

u2 + e−u

2u . Then, we get

log(P (z)) =
1

2
log(1− e−w) +

π2

6w
+ w

∞∑
k=0

g(wk)

g is chosen so that it is continuous at 0. Note that the sum is a Riemann sum for
the integral from 0 to infinity of g(u). In fact, it can be shown that

w

∞∑
k=0

g(wk) =

∫ ∞

0

g(u)du+O(w) = −1

2
log(2π) +O(w)

The proof for this is quite involved and is not relevant to our discussion, so in order
to see it look at [AC17]

So now, we have

log(f(e−w)) =
π2

6w
+

1

2
log(1− e−w)− 1

2
log(2π) +O(w)

Then, replacing z = e−w, we get

log(f(z)) =
π2

6w
+

1

2
log(

1− z

2π
) +O(w)

Since we have that |z| < 1, and w = − log(z) = log(1− (1− z)) =
∑∞

k=0(1− z)k/k.
This means that O(w) = O(1− z) as z approaches 1. In a similar fashion, we can
also show that

1

w
=

1

1− z
+−1

2
+O(1− z)

Therefore,

log(f(z)) =
π2

6(1− z)
− π2

12
+

1

2
log(

1− z

2π
) +O(1− z)

Finally, we get that

f(z) =

√
1− z

2π
e

π2

6(1−z)
−π2

12 +O(1−z) = ϕ(z)eO(1−z)

= ϕ(z)(1 +O(1− z)

■

Now, we are finally ready to use the circle method. Using the circle method, we
will bound the difference between P (z) and our approximation ϕ

Lemma 4.4. Let ϕ(z) =
∑∞

k=0 q(n)z
n. We aim to show that

p(n) = q(n) +O(n−5/4eπ
√

2n/3)
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Proof. By the circle method, we know that

p(n)− q(n) =
1

2πi

∫
|z|=1−π/

√
6n

f(z)− ϕ(z)

zn+1
dz

We split the contour into major and minor arcs, letting the major arc

M = {z ∈ C : |1− z| < π
√

2/3n}
and the minor arc being everything else.

We can first bound the minor arc.∫
m

f(z)− ϕ(z)

zn+1
dz ≤

∫
m

|f(z)|+ |ϕ(z)|
|zn+1|

|dz| ≤
∫
m

e
1

|1−z|+
1

1−|z| − |ϕ(z)|
|z|n+1

|dz|

= O

(∫
m

(e
1

|1−z|+
1

1−|z| + e
π2

6|1−z| )|z|−(n+1)|dz|
)

= O

(∫
m

(e
1
π (
√

3n/2+
√
6n) + e

π2

6

√
3n/2)eπ

√
n/6|dz|

)
= O(ea

√
n)

where a < π
√
2/3

Next, we bound the major arc with the knowledge that the length of M is
O(n−1/2)∫
M

f(z)− ϕ(z)

zn+1
dz = O(

∫
M

|z|−n|1−z|3/2e
π
6 · 1

1−|z| |dz|) = O(e2π
√

n/6·n−3/4)·O(n−1/2)

= O(n−5/4eπ
√

2n/3)

■

Now, all that is left to do is to compute q(n) We begin with the identity

π
√
2eπ

2/12ϕ(z) = (1− z)

∫ ∞

−∞
eπt

√
2/3−(1−z)t2dt

We therefore have that

π
√
2eπ

2/12q(n) =

∫ ∞

−∞
eπt

√
2/3−t2et

2n(1−n)dt =

∫ ∞

−∞
eπt

√
2/3−t2

(
t2n

n!
− t2n−2

(n− 1)!

)
dt

Letting t = s+
√
n and then using Stirling’s formula for n!, we get

∼ eπ
√

2n/3

√
2πn

∫ ∞

−∞
seπ

√
2/3s−s2−2

√
ns

(
1 +

s√
n

)2n−2(
2 +

s√
n

)
ds

Taking a limit inside the integral as n approaches infinity yields that

π
√
2eπ

2/12q(n) ∼ eπ
√

2n/3

√
2πn

∫ ∞

−∞
2seπ

√
2/3s−2s2ds =

π

2
√
6n

e
π2

12 +π
√

2n/3

This means that

q(n) ∼ eπ
√

2n/3

4n
√
3

Then, by lemma 4.4, we have that

p(n) ∼ eπ
√

2n/3

4n
√
3

+O(n−5/4eπ
√

2n/3)

This completes the proof of the Hardy-Ramanujan Formula for p(n)
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5. Other Problems and Conclusion

We will now look at some other examples where the circle method could be used,
although we will only briefly look at each one.

Question 5.1. For every k ∈ N does there exist an s ∈ Z>0 such that for every
n ∈ N, ak1 + ak2 · · · aks = n for some ak ∈ N

This problem is called Waring’s problem, and it can be solved using the circle
method. For this example Vinogradov’s adaptation proves to be more useful. We
have that A is the set of powers of k. For notational convenience, let Let r(n, s) =
{ai ∈ N : ak1 + ak2 · · ·+ aks = n}. Note that this means that every ai ≤ n1/k. We can
now define

G(z) =
∑

a≤n1/k

e2πiaz

This allows us to say that

r(n, s) =

∫ 1

0

G(z)s

e2πinz
dz =

∫
M

G(z)s

e2πinz
dz +

∫
m

G(z)s

e2πinz
dz

Now we must define the major and minor arcs. First we define the major arc. Let
Mq = {x ∈ R/Z : |x− a

k | ≤
1
qn}, where a ∈ R and k ∈ Z and δ > 0. The major arc

is essentially a small interval around every fraction a/k. We define

M =
⋃

1≤q≤n1−1/k

Mq

We define everything else to be the minor arc. We can show that the integral over
the minor arcs ∫

m

G(z)s

e2πinz
dz = o(ns/k−1)

Bounding the major arcs is also more tricky. For more information see [ASS22]

Now that we have outlined the broad strokes in the solution to Waring’s Prob-
lem, we introduce an open problem:

Question 5.2. Consider Question 0.1 with A = P and s = 2, where P is the set
of primes. This asks whether every even number is the sum of two primes.

This is known as Goldbach’s conjecture, which is a famous unsolved problem.
Some progress can be made on it using the circle method.

In conclusion, the circle method is a powerful tool which can be used to analyze
additive number theory problems. As seen in this paper, it can be adapted in a
variety of ways to make it useful in different problems.
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